2024 2023 2022 2021 2020 2019 2018 2017 2016 2015 2014 2013
Enzymology Lab. 2012-2008 2007-2005 2004-2002 2001 - 1999 1998 - 1996 1995 - 1993
Prof. Fushinobu's complete publication list
ビフィズス菌研究会第1回国際シンポジウム ポスター賞
張 欣哲
Poster Award (The 1st International Symposium on Bifidobacterium Research 2024, Tokyo, Japan)
Xinzhe Zhang
Crystal structure of β-D-galactofuranosidase from Streptomyces sp. JHA19 in complex with an inhibitor provides insights into substrate specificity
N. Fujio, C. Yamada, T. Kashima, E. Matsunaga, R.J. Nash, K. Takegawa, and S. Fushinobu
FEBS Lett., in press (2024)Crystal structure of Bifidobacterium bifidum glycoside hydrolase family 110 α-galactosidase specific for blood group B antigen
T. Kashima, M. Akama, T. Wakinaka, T. Arakawa, H. Ashida, and S. Fushinobu
J. Appl. Glycosci. 71 (3), 81-90 (2024)Genetic and functional diversity of β-N-acetylgalactosamine-targeting glycosidases expanded by deep-sea metagenome analysis
T. Sumida, S. Hiraoka, K. Usui, A. Ishiwata, T. Sengoku, K.A. Stubbs, K. Tanaka, S. Deguchi, S. Fushinobu, and T. Nunoura
Nat. Commun. 15, 3543 (2024)Cytosolic UDP-L-arabinose synthesis by bifunctional UDP-glucose 4-epimerases in Arabidopsis
A. Umezawa, M. Matsumoto, H. Handa, K. Nakazawa, M. Miyagawa, G.J. Seifert, D. Takahashi, S. Fushinobu, and T. Kotake
Plant J. 119 (1), 508-524 (2024)Structural insights into thermophilic chaperonin complexes
Z. Liao, C.C. Gopalasingam, M. Kameya, C. Gerle, H. Shigematsu, M. Ishii, T. Arakawa, and S. Fushinobu
Structure 32 (6), 679-689 (2024)Charge neutralization and β-elimination cleavage mechanism of family 42 L-rhamnose-α-1,4-D-glucuronate lyase revealed using neutron crystallography
N. Yano, T. Kondo, K. Kusaka, T. Arakawa, T. Sakamoto, and S. Fushinobu
J. Biol. Chem. 300 (3), 105774 (2024)Molecular basis of absorption at 340 nm of 3-ketoglucosides under alkaline conditions
M. Kitaoka, A. Takano, M. Takahashi, Y. Yamakawa, S. Fushinobu, and N. Yoshida
J. Appl. Glycosci. 71 (1), 9-13 (2024)N2-Acetylornithine deacetylase functions as a Cys-Gly dipeptidase in the cytosolic glutathione degradation pathway in Arabidopsis thaliana
S. Miyaji, T. Ito, T. Kitaiwa, K. Nishizono, S.I. Agake, H. Harata, H. Aoyama, M. Umahashi, M. Sato, J. Inaba, S. Fushinobu, T. Yokoyama, A. Maruyama-Nakashita, M.Y. Hirai, N. Ohkama-Ohtsu
Plant. J. 118 (5), 1603-1618 (2024)Bifidobacterial GH146 β-L-arabinofuranosidase for the removal of β1,3-L-arabinofuranosides on plant glycans
K. Fujita, H. Tsunomachi, L. Pan, S. Maruyama, M. Miyake, A. Dakeshita, K. Kitahara, K. Tanaka, Y. Ito, A. Ishiwata, and S. Fushinobu
Appl. Microbiol. Biotechnol. 108, 199 (2024)Novel tetrahydrofolate-dependent D-serine dehydratase activity of serine hydroxymethyltransferases
T. Miyamoto, S. Fushinobu, Y. Saitoh, M. Sekine, M. Katane, K. Sakai-Kato, and H. Homma
FEBS J. 291 (2), 308-322 (2024)
Taking a walk to find new mucinases
S. Fushinobu
Nat. Catal. 7 345-346 (2024)ビフィズス菌由来のB型血液型抗原に特異的なGH110 α1,3-galactosidase AgaBbの構造解析
鹿島騰真、芦田久、伏信進矢
Photon Factory News 42 (3), 10-14 (2024)
Structural insight into a bifidobacterial GH110 α1,3-galactosidase specific for type B blood group antigen
T. Kashima, H. Ashida and S. Fushinobu結核菌の細胞壁糖鎖を分解する新規酵素群の同定と構造基盤
Identification and structural basis of novel enzymes that degrade cell wall glycans of mycobacteria
鹿島騰真、伏信進矢、下川倫子、藤田清貴、石渡 明弘
日本結晶学会誌 66 (3), 171-172 (2024)Structures of Rediscovered Mycobacterial Cell Wall Polysaccharide-Degrading Enzymes
S. Fushinobu, A. Ishiwata, and K. Fujita
Photon Factory Highlights 2023 [Life Science] 3-3, pp. 28-29Structure of bifidobacterial sulfoglycosidase revealed the architecture for specific sugar recognition and breakdown of intestinal mucin glycan
S. Fushinobu, T. Katoh, and T. Kashima
SPring-8/SACLA Research Frontiers 2023 [Life Science], pp. 30-31クライオ電顕で捕捉したシャペロニン複合体形成の構造基盤
Structural basis of chaperonin complex formation captured by cryo-electron microscopy
廖増威、伏信進矢
SPring-8/SACLA利用者情報 29 (3), 195-199 (2024)水素細菌の複合体タンパク質のクライオ電顕による構造解析
廖増威、伏信進矢
令和5年度東京大学低温センター年報 (Annual Report 2023, Cryogenic Research Center, The University of Tokyo) 15, 14-17 (2023)腸内細菌による硫酸化ムチン糖鎖の新規分解経路の発見と解析
加藤紀彦、山田千早、伏信進矢、片山高嶺
生化学 96 (2), 285-290 (2024)
(みにれびゅう)新規な糖質関連酵素の立体構造解析に関する研究
伏信進矢
応用糖質科学 14 (1), 8-13 (2024)
(総説 -学会賞受賞論文-)The key to co-evolution between humans and colonic bifidobacteria; the acquisitions of type 1 oligosaccharides abundance in breast milk as well as type 1 oligosaccharides metabolism by colonic bifidobacteria
T. Urashima, K. Fukuda, M. Kitaoka, S. Fushinobu, and T. Katayama
ヒトービフィズス菌共生進化の鍵、ヒト固有のタイプ1型ミルクオリゴ糖優先性への進化とヒト腸内定着性ビフィズス菌によるタイプ1型糖鎖代謝酵素の獲得
浦島匡、福田健二、北岡本光、伏信進矢、片山高嶺
Glycoforum 27 (2), A5 (2024)Bifidobacterium bifidum由来の硫酸化ムチン糖鎖および血液型抗原分解酵素の構造基盤
鹿島騰真、加藤紀彦、山田千早、片山高嶺、芦田久、伏信進矢
応用糖質科学 13 (4), 194-202 (2024)
(2022年度応用糖質科学シンポジウム)Role of β-L-Arabinofuranosidases in Intestinal Bacteria
K. Fujita, A. Ishiwata, and S. Fushinobu
Trends Glycosci. Glycotechnol. 36 (210), E35-E38 (2024)
腸内細菌におけるβ-L-アラビノフラノシダーゼの役割
藤田清貴、石渡明弘、伏信進矢
Trends Glycosci. Glycotechnol. 36 (210), J35-J38 (2024)中性子結晶構造解析で明らかになったラムノシルグルクロン酸リアーゼのアラビアガム切断機構
矢野直峰、伏信進矢
日本中性子科学会誌「波紋」 34 (4), 130-133 (2024)Design and synthesis of the mechanism-based inhibitor probes against the glycoside hydrolase family 116 β-D-arabinofuranosidase
A. Ishiwata, R. Fukushima, S. Fushinobu, K. Fujita, K. Tanaka, and Y. Ito
Peptide Science 2023, pp. 155–156 (2024)
(Proceedings of The 60th Japanese Peptide Symposium 2023, Shiga, Japan)
日本応用糖質科学会 学会賞
伏信進矢
The Japanese Society of Applied Glycoscience Award
Shinya Fushinobu野本賞(日本微生物学連盟)
宮永顕正
放線菌が生産するβ-アミノ酸含有マクロラクタム抗生物質の生合成研究
Nomoto Award (Federation of Microbiological Societies of Japan)
Akimasa Miyanaga日本農芸化学会関東支部2023年度大会 優秀発表賞
曽根康世
JSBBA Kanto branch meeting 2023, Excellent Presentation Award
Kosei Sone
Protocatechuate hydroxylase is a novel group A flavoprotein monooxygenase with a unique substrate recognition mechanism
N. Katsuki, R. Fukushima, Y. Doi, S. Masuo, T. Arakawa, C. Yamada, S. Fushinobu, and N. Takaya
J. Biol. Chem. 300 (1), 105508 (2023)Identification and characterization of endo-α-, exo-α-, and exo-β-D-arabinofuranosidases degrading lipoarabinomannan and arabinogalactan of mycobacteria
M. Shimokawa, A. Ishiwata, T. Kashima, C. Nakashima, J. Li, R. Fukushima, N. Sawai, M. Nakamori, Y. Tanaka, A. Kudo, S. Morikami, N. Iwanaga, G. Akai, N. Shimizu, T. Arakawa, C. Yamada, K. Kitahara, K. Tanaka, Y. Ito, S. Fushinobu, and K. Fujita
Nat. Commun. 14, 5803 (2023)Substrate recognition mode of a glycoside hydrolase family 42 β-galactosidase from Bifidobacterium longum subspecies infantis(BiBga42A) revealed by crystallographic and mutational analyses
A. Gotoh, M. Hidaka, H. Sakurama, M. Nishimoto, M. Kitaoka, M. Sakanaka, S. Fushinobu, and T. Katayama
Microbiome Res. Rep. 2, 20 (2023)A bacterial sulfoglycosidase highlights mucin O-glycan breakdown in the gut ecosystem
T. Katoh, C. Yamada, W.D. Wallace, A. Yoshida, A. Gotoh, M. Arai, T. Maeshibu, T. Kashima, A. Hagenbeek, M.N. Ojima, H. Takada, M. Sakanaka, H. Shimizu, K. Nishiyama, H. Ashida, J. Hirose, M. Suarez-Diez, M. Nishiyama, I. Kimura, K.A. Stubbs, S. Fushinobu, and T. Katayama
Nat. Chem. Biol. 19 (6), 778-789 (2023)Improved 2α-hydroxylation efficiency of steroids by CYP154C2 using structure-guided rational design
Q. Gao, B. Ma, Q. Wang, H. Zhang, S. Fushinobu, J. Yang, S. Lin, K. Sun, B.-N. Han, and L.-H. Xu
Appl. Environ. Microbiol. 89 (3), e02186-22 (2023)
Substrate Specificity of Chondroitinase ABC-I Based on Analyses of Biochemical Reactions and Crystal Structure
I. Watanabe, A. Miyanaga
Trends Glycosci. Glycotechnol. 35 (208), E94-E99 (2023)Synthesis and structural analysis of D-fructofuranosylated compounds for the analysis of GH172 difructose dianhydride I synthase/hydrolase
A. Ishiwata, T. Kashima, M. Kaieda, K. Tanaka, K. Fujita, S. Fushinobu, and Y. Ito
Pure Appl. Chem. 95 (9), 955-964 (2023)Identification and structural basis of an enzyme that degrades oligosaccharides in caramel
T. Kashima, A. Ishiwata, K. Fujita, and S. Fushinobu
Biophys. Physicobiol. 20 (2), e200017 (2023)近藤辰哉、鹿島騰真、今井 友也
常温常圧水系溶媒でナノ繊維を紡糸するセルロース合成酵素
Cellulose synthase, the nanofiver-spinning in aqueous environment at moderate temperature/pressure
繊維学会誌 79 (9), 279-285 (2023)
2021年度量子ビームサイエンスフェスタ 学生奨励賞
鹿島騰真
Quantum Beam Science Festa. Young Researcher's Award 2021
Toma Kashima
Mechanism-based inhibition of GH127/146 cysteine glycosidases by stereospecifically functionalized L-arabinofuranosides
A. Ishiwata, S. Narita, K. Kimura, K. Tanaka, K. Fujita, S. Fushinobu and Y. Ito
Bioorg. Med. Chem. 75, 117054 (2022)Glutathione degradation activity of γ-glutamyl peptidase 1 manifests its dual roles in primary and secondary sulfur metabolism in Arabidopsis
T. Ito, T. Kitaiwa, K. Nishizono, M. Umahashi, S. Miyaji, S.I. Agake, K. Kuwahara, T. Yokoyama, S. Fushinobu, A. Maruyama-Nakashita, R. Sugiyama, M. Sato, J. Inaba, M.Y. Hirai, N. Ohkama-Ohtsu
Plant J. 111 (6), 1626-1642 (2022)Synthesis of naturally occurring β-L-arabinofuranosyl-L-arabinofuranoside structures towards the substrate specificity evaluation of β-L-arabinofuranosidase
A. Ishiwata, K. Fujita, S. Fushinobu, K. Tanaka, and Y. Ito
Bioorg. Med. Chem. 68, 116849 (2022)Crystal structures of glycoside hydrolase family 136 lacto-N-biosidases from monkey gut- and human adult gut bacteria
C. Yamada, T. Katayama, and S. Fushinobu
Biosci. Biotechnol. Biochem. 32 (2), 171-180 (2022)Substrate complex structure, active site labeling and catalytic role of the zinc ion in cysteine glycosidase
S. Maruyama, K. Sawano, S. Amaki, T. Suzuki, S. Narita, K. Kimura, T. Arakawa, C. Yamada, Y. Ito, N. Dohmae, K. Fujita, A. Ishiwata, and S. Fushinobu
Glycobiology 86 (4), 464-475 (2022)
カラメルに含まれるオリゴ糖を分解する酵素の構造生物学的な洞察
鹿島騰真、石渡明弘、藤田清貴、伏信進矢
日本結晶学会誌 64 (4), 263-264 (2022)カラメルに含まれるオリゴ糖を分解する酵素の同定と構造基盤
鹿島騰真、石渡明弘、藤田清貴、伏信進矢
生物物理 62 (3), 184-186 (2022)ヒト・動物の腸内に生息する嫌気性細菌の代謝機能 ビフィズス菌やメタン菌の代謝機能から応用研究への展開
山田千早
化学と生物 60 (9), 446-452 (2022)
農芸化学若手女性研究者賞 (2021年 日本農芸化学会)
山田 千早
ヒト・動物の腸内に生息する嫌気性細菌の代謝機能に関する研究
JSBBA Award for Young Women Scientists 2021 (The Japan Society for Bioscience, Biotechnology, and Agrochemistry)
Chihaya Yamada
Identification of a difructose dianhydride I synthase/hydrolase from oral bacterium establishes a novel glycoside hydrolase family
T. Kashima, K. Okumura, A. Ishiwata, M. Kaieda, T. Terada, T. Arakawa, C. Yamada, K. Shimizu, K. Tanaka, M. Kitaoka, Y. Ito, K. Fujita, and S. Fushinobu
J. Biol. Chem. 297 (5), 101324 (2021)Structural and functional analysis of gum arabic L-rhamnose-α-1,4-D-glucuronate lyase establishes a novel polysaccharide lyase family
T. Kondo, M. Kichijo, A. Maruta, M. Nakaya, S. Takenaka, T. Arakawa, S. Fushinobu, and T. Sakamoto
J. Biol. Chem. 297 (3), 101001 (2021)Biochemical and structural characterization of a novel 4‐O‐α‐L‐rhamnosyl‐β‐D‐glucuronidase from Fusarium oxysporum
T. Kondo, M. Kichijo, M. Nakaya, S. Takenaka, T. Arakawa, T. Kotake, S. Fushinobu, and T. Sakamoto
FEBS J. 288 (16), 4918-4938 (2021)Cysteine nucleophiles in glycosidase catalysis: application of a covalent β-L-arabinofuranosidase inhibitor
N.G.S. McGregor, J. Coines, V. Borlandelli, S. Amaki, M. Artola, A. Nin-Hill, D. Linzel, C. Yamada, T. Arakawa, A. Ishiwata, Y. Ito, G.A. van der Marel, J.D.C. Codée, S. Fushinobu, H.S. Overkleeft, C. Rovira, and G.J. Davies
Angew. Chem.-Int. Edit. 60 (11), 5754-5758 (2021)
Structure and evolution of the bifidobacterial carbohydrate metabolism proteins and enzymes
S. Fushinobu and M. Abou Hachem
Biochem. Soc. Trans. 49 (2), 563-578 (2021)Molecular evolution and functional divergence of UDP-hexose 4-epimerases
S. Fushinobu
Curr. Opin. Chem. Biol. 61, 53-62 (2021)Catalytic Mechanism of Cysteine Glycosidase Revealed by X-Ray Crystallography
S. Amaki, T. Arakawa, C. Yamada and S. Fushinobu
Photon Factory Highlights 2020 [Life Science] 4-6, pp. 50-51
日本応用糖質科学会2020年度大会(第69回) ポスター賞
鹿島 騰真 (Toma Kashima)
カラメル化糖に作用するビフィズス菌の新規exo-α-D-fructofuranosidaseの構造解析
Molecular analysis of cyclic α-maltosyl-(1→6)-maltose binding protein in the bacterial metabolic pathway
M. Kohno, T. Arakawa, N. Sunagawa, T. Mori, K. Igarashi, T. Nishimoto, and S. Fushinobu
PLOS ONE 15 (11), e0241912 (2020)Conversion of levoglucosan into glucose by the coordination of four enzymes through oxidation, elimination, hydration, and reduction
Y. Kuritani, K. Sato, H. Dohra, S. Umemura, M. Kitaoka, S. Fushinobu, and N. Yoshida
Sci. Rep. 10, 20066 (2020)Crystallographic and cryogenic electron microscopic structures and enzymatic characterization of sulfur oxygenase reductase from Sulfurisphaera tokodaii
Y. Sato, T. Yabuki, N. Adachi, T. Moriya, T. Arakawa, M. Kawasaki, C. Yamada, T. Senda, S. Fushinobu, and T. Wakagi
J. Struct. Biol. :X 4, 100030 (2020)Butyrate producing colonic Clostridiales metabolise human milk oligosaccharides and cross feed on mucin via conserved pathways
M.J. Pichler*, C. Yamada*, B. Shuoker, C. Alvarez-Silva, A. Gotoh, M.L. Leth, E. Schoof, T. Katoh, M. Sakanaka, T. Katayama, C. Jin, N.G. Karlsson, M. Arumugam, S. Fushinobu, and M. Abou Hachem
Nat. Commun. 11, 3285 (2020) *equally contributedCrystal structure of β-L-arabinobiosidase belonging to glycoside hydrolase family 121
K. Saito, A.H. Viborg, S. Sakamoto, T. Arakawa, C. Yamada, K. Fujita, and S. Fushinobu
PLOS ONE 15 (6), e0231513 (2020)Structural analysis of β‐L‐arabinobiose binding protein in the metabolic pathway of hydroxyproline‐rich glycoproteins in Bifidobacterium longum
M. Miyake, T. Terada, M. Shimokawa, N. Sugimoto, T. Arakawa, K. Shimizu, K., Igarashi, K. Fujita, and S. Fushinobu
FEBS J. 287 (23), 5114-5129 (2020)Dissecting the stereocontrolled conversion of short-lived sulfenic acid by lachrymatory factor synthase
T. Arakawa, Y. Sato, M. Yamada, J. Takabe, Y. Moriwaki, N. Masamura, M. Kato, M. Aoyagi, T. Kamoi, T. Terada, K. Shimizu, N. Tsuge, S. Imai, and S. Fushinobu
ACS Catal. 10 (1), 9-19 (2020)Structural basis for selectivity in a highly reducing type II polyketide synthase
D. Du, Y. Katsuyama, M. Horiuchi, S. Fushinobu, A. Chen, T. D. Davis, M D. Burkart, and Y. Ohnishi
Nat. Chem. Biol. 16 (7), 776–782 (2020)Streptococcus pneumoniae hijacks host autophagy by deploying CbpC as a decoy for Atg14 depletion
S. Shizukuishi, M. Ogawa, S. Matsunaga, M. Tomokiyo, T. Ikebe, S. Fushinobu, A. Ryo, and M. Ohnishi
EMBO Reports e49232 (2020)Regio- and stereoselective hydroxylation of testosterone by a novel cytochrome P450 154C2 from Streptomyces avermitilis
Q. Wang, B. Ma, S. Fushinobu, C. Zhang, and L.-H. Xu
Biochem. Biophys. Res. Commun. 522 (2), 335-361 (2020)
タマネギ催涙成分が作られる酵素反応の構造・理論基盤
佐藤優太、荒川孝俊、伏信進矢
Structural and theoretical bases of the enzymatic reaction producing the onion lachrymatory compound
Y. Sato, T. Arakawa and S. Fushinobu
Photon Factory News 38 (3), 15-19 (2020) Cover Illustration of This IssueReaction Mechanism for Formation of the Tear-Inducing Chemical Compound from Onion
T. Arakawa, Y. Sato and S. Fushinobu
Photon Factory Highlights 2019 [Life Science] 4-3, pp. 46-47微生物によるレボグルコサン代謝に関わる酵素
伏信進矢、山田千早、荒川孝俊、北岡本光
応用糖質科学 10 (2), 103-108 (2020)
(2019年度応用糖質科学シンポジウム)
Enzymes involved in levoglucosan metabolism by microbes
S. Fushinobu, C. Yamada, T. Arakawa, and M. Kitaoka
Bull. App. Glycosci. 10 (2), 103-108 (2020)
(Proceedings of the Symposium on Applied Glycoscience, 2019)荒川孝俊、伏信進矢
タマネギが催涙性分子を生成する複雑なしくみ - 硫黄化合物の反応性と食品化学への新たな知見
月刊化学 75 (5), 48-51 (2020)
2019年度 長瀬研究振興賞(長瀬科学技術振興財団)
伏信 進矢
細菌のレボグルコサン代謝系の解明と特異的酵素を利用した検出・定量法の開発
NAGASE Foundation Award 2019 (NAGASE Science and Technology Foundation)
Shinya Fushinobu日本農芸化学会2019年度大会 トピックス賞
タマネギ由来催涙因子合成酵素の触媒機構
佐藤 優太、荒川 孝俊、高辺 潤平、青柳 守紘、加藤 雅博、鴨井 享宏、正村 典也、柘植 信昭、今井 真介、伏信 進矢
Hot Topics Award at Annual Meeting of JSBBA 2019
Yuta SATO, Takatoshi ARAKAWA, Jumpei TAKABE, Morihiro AOYAGI, Masahiro KATO, Takahiro KAMOI, Noriya MASAMURA, Nobuaki TSUGE, Shinsuke IMAI, and Shinya FUSHINOBU
Catalytic Mechanism of Onion Lachrymatory Factor SynthaseJB論文賞 2019年(第27回)
張榮維、佐藤裕介、小川哲弘、荒川孝俊、深井周也、伏信進矢、正木春彦
JB Award 2019
Jung-Wei Chang, Yusuke Sato, Tetsuhiro Ogawa, Takatoshi Arakawa, Shuya Fukai, Shinya Fushinobu, Haruhiko Masaki
Crystal structure of the central and the C-terminal RNase domains of colicin D implicated its translocation pathway through inner membrane of target cell
Understanding the molecular mechanism underlying the high catalytic activity of p-hydroxybenzoate hydroxylase mutants for producing gallic acid
Y. Moriwaki, M. Yato, T. Terada, S. Saito, N. Nukui, T. Iwasaki, T. Nishi, Y. Kawaguchi, K. Okamoto, T. Arakawa, C. Yamada, S. Fushinobu, and K. Shimizu
Biochemistry 58 (45), 4543-4558 (2019)Structural basis for the specific cleavage of core-fucosylated N-glycans by endo-β-N-acetylglucosaminidase from the fungus Cordyceps militaris
H. Seki, Y. Huang, T. Arakawa, C. Yamada, T. Kinoshita, S. Iwamoto, Y. Higuchi, K. Takegawa, and S. Fushinobu
J. Biol. Chem. 294 (45), 17143-17154 (2019)Structural basis for broad substrate specificity of UDP-glucose 4-epimerase in the human milk oligosaccharide catabolic pathway of Bifidobacterium longum
Y.-W. Nam, M. Nishimoto, T. Arakawa, M. Kitaoka, and S. Fushinobu
Sci. Rep. 9, 11081 (2019)
平成30年度 日本生物工学会東日本支部長賞
山田 千早
偏性嫌気性細菌の代謝解析とその応用利用
Identification, functional characterization, and crystal structure determination of bacterial levoglucosan dehydrogenase
M. Sugiura, M. Nakahara, C. Yamada, T. Arakawa, M. Kitaoka, and S. Fushinobu
J. Biol. Chem. 293 (45), 17375-17386 (2018)Structural features of a bacterial cyclic α-maltosyl-(1→6)-maltose (CMM) hydrolase critical for CMM recognition and hydrolysis
M. Kohno, T. Arakawa, H. Ota, T. Mori, T. Nishimoto, and S. Fushinobu
J. Biol. Chem. 293 (43), 16874-16888 (2018)Crystal structure of the central and the C-terminal RNase domains of colicin D implicated its translocation pathway through inner membrane of target cell
J. W. Chang, Y. Sato, T. Ogawa, T. Arakawa, S. Fukai, S. Fushinobu, and H. Masaki
J. Biochem. 164 (5), 329-339 (2018) Cover Illustration of This IssueStructural and thermodynamic insights into β-1,2-glucooligosaccharide capture by a solute-binding protein in Listeria innocua
K. Abe, N. Sunagawa, T. Terada, Y. Takahashi, T. Arakawa, K. Igarashi, M. Samejima, H. Nakai, H. Taguchi, M. Nakajima, and S. Fushinobu
J. Biol. Chem. 293 (23), 8812-8828 (2018)Ligand complex structures of l-amino acid oxidase/monooxygenase from Pseudomonas sp. AIU 813 and its conformational change
D. Im, D. Matsui, T. Arakawa, K. Isobe, Y. Asano, and S. Fushinobu
FEBS Open Bio 8 (3), 314-324 (2018) Cover Illustration of This IssuePurification, cloning, functional expression, structure, and characterization of a thermostable β-mannanase from Talaromyces trachyspermus B168 and its efficiency in production of mannooligosaccharides from coffee wastes
K. Suzuki, M. Michikawa, H. Sato, M. Yuki, K. Kamino, W. Ogasawara, S. Fushinobu, and S. Kaneko
J. Appl. Glycosci. 65 (2), 13-21 (2018)Identification and characterization of a novel β-D-galactosidase that releases pyruvylated galactose
Y. Higuchi, H. Matsufuji, M. Tanuma, T. Arakawa, K. Mori, C. Yamada, R. Shofia, E. Matsunaga, K. Tashiro, S. Fushinobu, and K. Takegawa
Sci. Rep. 8 (1), 12013 (2018)
Conformations of the type-1 lacto-N-biose I unit in protein complex structures
S. Fushinobu
Acta Cryst. F74 (8), 473-479 (2018)糖の立体配座(用語解説)
伏信進矢
応用糖質科学 8 (2), 168 (2018)
平成29年度 東京大学大学院農学生命科学研究科 研究科長賞
阿部 紘一
Dean's Award from the Graduate School of Agricultural and Life Sciences, The University of Tokyo
Koichi Abe
2017年度酪農科学シンポジウム 若手優秀ポスター賞
佐藤真与 (Mayo Sato)、荒川孝俊、西本完、北岡本光、伏信進矢
ビフィズス菌由来N-アセチルヘキソサミン 1-キナーゼの立体構造とオリゴ糖合成に向けた改変
Discovery of α-L-arabinopyranosidases from human gut microbiome expands the diversity within glycoside hydrolase family 42
A.H. Viborg, T. Katayama, T. Arakawa, M. Abou Hachem, L. Lo Leggio, M. Kitaoka, B. Svensson, and S. Fushinobu
J. Biol. Chem. 292 (51), 21092-21101 (2017)Crystal structure and substrate specificity modification of acetyl xylan esterase from Aspergillus luchuensis
D. Komiya, A. Hori, T. Ishida, K. Igarashi, M. Samejima, T. Koseki, and S. Fushinobu
Appl. Environ. Microbiol. 83 (20), e01251-17 (2017)The first crystal structure of a family 129 glycoside hydrolase from a probiotic bacterium reveals critical residues and metal cofactors
M. Sato, D. Liebschner, Y. Yamada, N. Matsugaki, T. Arakawa, S. S. Wills, M. Hattie, K. A. Stubbs, T. Ito, T. Senda, H. Ashida, and S. Fushinobu
J. Biol. Chem. 292 (29), 12126-12138 (2017)Molecular insight into evolution of symbiosis between breast-fed infants and a member of the human gut microbiome Bifidobacterium longum
C. Yamada, A. Gotoh, M. Sakanaka, M. Hattie, K. A. Stubbs, A. Katayama-Ikegami, J. Hirose, S. Kurihara, T. Arakawa, M. Kitaoka, S. Okuda, T. Katayama, and S. Fushinobu
Cell Chem. Biol. 24 (4), 515-524 (2017)Biochemical and structural analyses of a bacterial endo-β-1,2-glucanase reveal a new glycoside hydrolase family
K. Abe, M. Nakajima, T. Yamashita, H. Matsunaga, S. Kamisuki, T. Nihira, Y. Takahashi, N. Sugimoto, A. Miyanaga, H. Nakai, T. Arakawa, S. Fushinobu, and H. Taguchi
J. Biol. Chem. 292 (18), 7487-7506 (2017)Mechanistic insight into the substrate specificity of 1,2-β-oligoglucan phosphorylase from Lachnoclostridium phytofermentans
M. Nakajima, N. Tanaka, N. Furukawa, T. Nihira, Y. Kodutsumi, Y. Takahashi, N. Sugimoto, A. Miyanaga, S. Fushinobu, H. Taguchi, H. Nakai
Sci Rep. 7, 42671 (2017)Hydroxylation of compactin (ML-236B) by CYP105D7 (SAV_7469) from Streptomyces avermitilis
Q. Yao, L. Ma, L. Liu, H. Ikeda, S. Fushinobu, S. Li, and L.-H. Xu
J. Microbiol. Biotechnol. 27 (5), 956-964 (2017)
ラクト-N-ビオシダーゼ(LnbX)の機能から考える母乳オリゴ糖を介したビフィズス菌と母乳栄養児の共生・共進化
後藤愛那、片山高嶺、山田千早、伏信進矢、櫻間晴子
酵素工学ニュース 78, 23-28 (2017)新規な糖質分解酵素の立体構造を決定して分かったこと
阿部紘一、佐藤真与、荒川孝俊、伏信進矢
平成28年度低温センター年報 (Annual Report 2016, Cryogenic Research Center, The University of Tokyo) 8, 26-31 (2017)新規ファミリーに属するビフィズス菌由来ラクト-N-ビオシダーゼの立体構造
山田千早、片山高嶺、Mitchell Hattie, Keith A. Stubbs, 荒川孝俊、伏信進矢
応用糖質科学 7 (2), 63-68 (2017)
C. Yamada, T. Katayama, M. Hattie, K. A. Stubbs, T. Arakawa, and S. Fushinobu
Crystal structure of a novel GH family lancto-N-biosidase from Bifidobacterium longum subsp. longum
Bull. App. Glycosci. 7 (2), 63-68 (2017)
(Proceedings of the Symposium on Applied Glycoscience, 2016)実用的オリゴ糖合成の可能性を秘めた糖質関連酵素の立体構造
伏信進矢
Crystal structures of carbohydrate-active enzymes with potential for practical oligosaccharide synthesis
S. Fushinobu
Int. J. Microgravity Sci. Appl. 34 (1), p340109 (2017)Metalloenzymes in Denitrification : Applications and Environmental Impacts (Editors: Isabel Moura, José J G Moura, Sofia R Pauleta, Luisa B Maia)
2017, RSC Publishing, Cambridge; ISBN: 978-1-78262-334-2
CHAPTER 14: Denitrification in Fungi
H. Shoun and S. Fushinobu
pp. 331-348.
第13回(平成28年度)日本学術振興会賞
糖質と糖リン酸に関わる代謝酵素の構造基盤と分子進化の解明
伏信進矢
13th (FY2016) JSPS PRIZE
Structural Bases and Molecular Evolution of Metabolic Enzymes Acting on Sugars and Sugar Phosphates
Shinya Fushinobu
平成28年度日本応用糖質科学会東日本支部若手奨励賞
β-1,2-グルカンの代謝に関わるタンパク質の機能構造解析
阿部紘一 Koichi Abe日本応用糖質科学会平成28年度大会(第65回) ポスター賞
阿部紘一 (Koichi Abe)、中島将博、砂川直輝、石田卓也、五十嵐圭日子、鮫島正浩、宮永顕正、中井博之、田口速男、荒川孝俊、伏信進矢
ABCトランスポーターソホロオリゴ糖結合タンパク質のリガンド認識の構造基盤
Crystal structures of archaeal 2-oxoacid:ferredoxin oxidoreductases from Sulfolobus tokodaii
Z. Yan, A. Maruyama, T. Arakawa, S. Fushinobu, and T. Wakagi
Sci. Rep. 6, 33061 (2016)Isolation and characterization of a thermostable lipase from Bacillus thermoamylovorans NB501
C. Yamada, K. Sawano, N. Iwase, M. Matsuoka, T. Arakawa, S. Nishida, and S. Fushinobu
J. Gen. App. Microbiol. 62 (6), 313-319 (2016)Archaeal Mo-containing glyceraldehyde oxidoreductase isozymes exhibit diverse substrate specificities through unique subunit assemblies
T. Wakagi, H. Nishimasu, M. Miyake, and S. Fushinobu
PLOS ONE 11 (1), e0147333 (2016)The crystal structure of an inverting glycoside hydrolase family 9 exo-β-D-glucosaminidase and the design of glycosynthase
Y. Honda, S. Arai, K. Suzuki, M. Kitaoka, and S. Fushinobu
Biochem. J. 473 (4), 463-472 (2016)Crystal structure and identification of a key amino acid for glucose tolerance, substrate specificity and transglycosylation activity of metagenomic β-glucosidase Td2F2
T. Matsuzawa, T. Jo, T. Uchiyama, J. A. Manninen, T. Arakawa, K. Miyazaki, S. Fushinobu, and K. Yaoi
FEBS J. 283 (12), 2340-2353 (2016)Hydroxylation of flavanones by Cytochrome P450 105D7 from Streptomyces avermitilis
L. Liu, Q. Yao, Z. Ma, H. Ikeda, S. Fushinobu, and L.-H. Xu
J. Mol. Catal. B: Enzymatic 132, 91-97 (2016)
A key enzyme for biofuel production: "Missing link" between oxidative cellulose degradation and ethanol fermentation by microbes
Y.-W. Nam, T. Arakawa, and S. Fushinobu
Photon Factory Activity Report #33 2015 Part A, Highlights and Facility Report [Life Science], pp. 60-61廃食用油を添加した好気性発酵システムの開発と好熱菌の油脂分解酵素の特性
伏信進矢
生活と環境 (日本環境衛生センター) 61 (5) (#721), 67-72 (2016)
第16回酵素応用シンポジウム研究奨励賞
微生物の糖代謝酵素の構造生物学的研究
伏信 進矢
16th Research Promoted Award on Enzyme Application, Amano's 16th Symposium on Enzyme Applications
Shinya Fushinobu平成27年度 東京大学大学院農学生命科学研究科 研究科長賞
佐藤 真与
Dean's Award from the Graduate School of Agricultural and Life Sciences, The University of Tokyo
Mayo Sato
Characterization and crystal structure determination of β-1,2-mannobiose phosphorylase from Listeria innocua
T. Tsuda, T. Nihira, K. Chiku, E. Suzuki, T. Arakawa, M. Nishimoto, M. Kitaoka, H. Nakai, and S. Fushinobu
FEBS Lett. 589 (24B), 3816-3821 (2015)Crystal structure and substrate recognition of cellobionic acid phosphorylase, which plays a key role in oxidative cellulose degradation by microbes
Y.-W. Nam, T. Nihira, T. Arakawa, Y. Saito, M. Kitaoka, H. Nakai, and S. Fushinobu
J. Biol. Chem. 290 (30), 18281-18292 (2015)Open–close structural change upon ligand binding and two magnesium ions required for the catalysis of N-acetylhexosamine 1-kinase
M. Sato, T. Arakawa, Y.-W. Nam, M. Nishimoto, M. Kitaoka, and S. Fushinobu
BBA - Proteins Proteom. 1854 (5), 333–340 (2015)An inverting β-1,2-mannosidase belonging to glycoside hydrolase family 130 from Dyadobacter fermentans
T. Nihira, K. Chiku, E. Suzuki, M. Nishimoto, S. Fushinobu, M. Kitaoka, K. Ohtsubo, and H. Nakai
FEBS Lett. 589 (23), 3604-3610 (2015)Gaining insight into the catalysis by GH20 lacto-N-biosidase using small molecule inhibitors and structural analysis
M. Hattie, T. Ito, A. W. Debowski, T. Arakawa, T. Katayama, K. Yamamoto, S. Fushinobu, and K. A. Stubbs
Chem. Commun. 51 (81), 15008-15011 (2015)Structural basis for the 4'-hydroxylation of diclofenac by a microbial cytochrome P450 monooxygenase
L.-H. Xu, H. Ikeda, L. Liu, T. Arakawa, T. Wakagi, H. Shoun, and S. Fushinobu
Appl. Microbiol. Biotechnol. 99 (7), 3081-3091 (2015)" Newton's cradle" proton relay with amide–imidic acid tautomerization in inverting cellulase visualized by neutron crystallography
A. Nakamura, T. Ishida, K. Kusaka, T. Yamada, S. Fushinobu, I. Tanaka, S. Kaneko, K. Ohta, H. Tanaka, K. Inaka, Y. Higuchi, N. Niimura, M. Samejima, and K. Igarashi
Science Adv. 1 (7), e1500263 (2015)Identification of the flavonoid luteolin as a repressor of the transcription factor hepatocyte nuclear factor 4α
J. Li, J. Inoue, J. M. Choi, S. Nakamura, Z. Yan, S. Fushinobu, H. Kamada, H. Kato, T. Hashidume, M. Shimizu, R. Sato
J. Biol. Chem. 290 (39), 24021-24035 (2015)
利己的な腸内細菌バクテロイデスと利他的なビフィズス菌
山田千早
生物工学会誌 93 (10), 627 (2015)Diversity in β-galactosidase Specificities within Bifidobacterium: Towards an Understanding of β-Galactoside Metabolism in the Gut Niche
A. H. Viborg
Trends Glycosi. Glycotechnol. 27 (156), E9-E12/J9-J12 (2015)
セルロース系バイオマスからの物質生産の鍵となる酵素とその立体構造
伏信進矢
クリーンエネルギー 24 (10), 42-46 (2015)バイオマス分解酵素に新たなスター ― 銅を活性中心にもつ溶解性多糖モノオキシゲナーゼ(最新のトピックス)
伏信進矢
月刊化学 70 (1), 68-69 (2015)新規な糖質関連酵素の構造と機能解析(セミナー室:糖質関連酵素の最近の進歩-3)
伏信進矢
化学と生物 53 (1), 45-50 (2015)
日本応用糖質科学会平成26年度大会(第63回) ポスター賞
佐藤 真与 (Mayo Sato)、西本 完、荒川 孝俊、北岡 本光、伏信 進矢
Bifidobacterium longum JCM1217由来N-アセチルヘキソサミン 1-キナーゼの構造・機能解析
Crystal structure of a feruloyl esterase belonging to the tannase family: a disulfide bond near a catalytic triad
K. Suzuki, A. Hori, K. Kawamoto, R. R. Thangudu, T. Ishida, K. Igarashi, M. Samejima, C. Yamada, T. Arakawa, T. Wakagi, T. Koseki, and S. Fushinobu
Proteins: Struct. Funct. Bioinform. 82 (10), 2857-2867 (2014)Structural basis for reversible phosphorolysis and hydrolysis reactions of 2-O-α-glucosylglycerol phosphorylase
K. K. Touhara, T. Nihira, M. Kitaoka, H. Nakai, and S. Fushinobu
J. Biol. Chem. 289 (26), 18067-18075 (2014)Crystal structure of glycoside hydrolase family 127 β-L-arabinofuranosidase from Bifidobacterium longum
T. Ito, K. Saikawa, S. Kim, K. Fujita, A. Ishiwata, S. Kaeothip, T. Arakawa, T. Wakagi, G. T. Beckham, Y. Ito, and S. Fushinobu
Biochem. Biophys. Res. Commun. 447 (1), 32-37 (2014)Mutational and crystallographic analysis of L-amino acid oxidase/monooxygenase from Pseudomonas sp. AIU 813: Interconversion between oxidase and monooxygenase activities
D. Matsui, D.-H. Im, A. Sugawara, Y. Fukuta, S. Fushinobu, K. Isobe, and Y. Asano
FEBS Open Bio 4, 220-228 (2014)Engineering the allosteric properties of archaeal non-phosphorylating glyceraldehyde-3-phosphate dehydrogenases
F. Ito, M. Miyake, S. Fushinobu, S. Nakamura, K. Shimizu, and T. Wakagi
BBA - Proteins Proteom. 1844 (4), 759-766 (2014)Four Cys residues in heterodimeric 2-oxoacid:ferredoxin oxidoreductase are required for CoA-dependent oxidative decarboxylation but not for a non-oxidative decarboxylation
Z. Yan, S. Fushinobu, and T. Wakagi
BBA - Proteins Proteom. 1844 (4), 736-743 (2014)Structural and mutational analysis of substrate recognition in kojibiose phosphorylase
S. Okada, T. Yamamoto, H. Watanabe, T. Nishimoto, H. Chaen, S. Fukuda, T. Wakagi, and S. Fushinobu
FEBS J. 281 (3), 778-786 (2014)Sulfolobus tokodaii ST2133 is characterized as a thioredoxin reductase-like ferredoxin:NADP+ oxidoreductase
Z. Yan, Y.-W. Nam, S. Fushinobu, and T. Wakagi
Extremophiles 18 (1), 99-110 (2014)The core of allosteric motion in Thermus caldophilus L-lactate dehydrogenase
Y. Ikehara, K. Arai, N. Furukawa, T. Ohno, T. Miyake, S. Fushinobu, M. Nakajima, A. Miyanaga, H. Taguchi
J. Biol. Chem. 289 (45), 31550-31564 (2014)Structural and biochemical analyses of glycoside hydrolase family 26 β-mannanase from a symbiotic protist of the termite Reticulitermes speratus
H. Tsukagoshi, A. Nakamura, T. Ishida, K.K. Touhara, M. Otagiri, S. Moriya, M. Samejima, K. Igarashi, S. Fushinobu, K. Kitamoto, and M. Arioka
J. Biol. Chem. 289 (15), 10843-10852 (2014)
Metalloproteins: A new face for biomass breakdown
S. Fushinobu
Nat. Chem. Biol. 10 (2), 88-89 (2014)Novel Active Center and Reaction Mechanism of GH127 β-L-Arabinofuranosidase from Bifidobacterium longum
T. Ito
Trends Glycosci. Glycotechnol. 26 (151), 131–140 (2014)
Bifidobacterium longum JCM1217由来GH127β-L-Arabinofuranosidase(HypBA1)の新規な活性中心と反応機構
伊藤佑ビフィズス菌由来GH20ラクト-N-ビオシダーゼの立体構造と反応機構
伊藤佑、片山高嶺、Mitchell Hattie、櫻間晴子、和田潤、鈴木龍一郎、芦田久、若木高善、山本憲二、Keith A. Stubbs、伏信進矢
応用糖質科学 4 (2), 140-146 (2014)
(平成25年度応用糖質科学シンポジウム)
Structure and reaction mechanism of GH20 lacto-N-biosidase from Bifidobacterium bifidum
T. Ito, T. Katayama, M. Hattie, H. Sakurama, J. Wada, R. Suzuki, H. Ashida, T. Wakagi, K. Yamamoto, K. A. Stubbs, and S. Fushinobu
Bull. App. Glycosci. 4 (2), 140-146 (2014)
(Proceedings of the Symposium on Applied Glycoscience, 2013)ヒトミルクオリゴ糖分解酵素ラクト-N-ビオシダ―ゼのX線結晶構造解析
伊藤佑、伏信進矢
Photon Factory News 31 (4), 10-14 (2014)
Crystal structures of GH20 lacto-N-biosidase from Bifidobacterium bifidum
T. Ito and S. Fushinobu
B.B.B.論文賞 (2012年 Vol. 76)
林到炫ら
Crystal structures of glycoside hydrolase family 51 α-L-arabinofuranosidase from Thermotoga maritima
D.-H. Im, K. Kimura, F. Hayasaka, T. Tanaka, M. Noguchi, A. Kobayashi, S. Shoda, K. Miyazaki, T. Wakagi, and S. Fushinobu
Biosci. Biotechnol. Biochem. 76 (2), 423-428 (2012)
Archaeal aldehyde dehydrogenase ST0064 from Sulfolobus tokodaii, a paralog of non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase, is a succinate semialdehyde dehydrogenase
F. Ito, H. Chishiki, S. Fushinobu, and T. Wakagi
Biosci. Biotechnol. Biochem. 77 (6), 1344-1348 (2013)Crystal structures of glycoside hydrolase family 3 β-glucosidase 1 from Aspergillus aculeatus
K. Suzuki, J.-I. Sumitani, Y.-W. Nam, T. Nishimaki, S. Tani, T. Wakagi, T. Kawaguchi, and S. Fushinobu
Biochem. J. 452 (2), 211-221 (2013)Crystal structures of a glycoside hydrolase family 20 lacto-N-biosidase from Bifidobacterium bifidum
T. Ito, T. Katayama, M. Hattie, H. Sakurama, J. Wada, R. Suzuki, H. Ashida, T. Wakagi, K. Yamamoto, K. A. Stubbs, and S. Fushinobu
J. Biol. Chem. 288 (17), 11795-11806 (2013)Preparation of p-nitrophenyl β-L-arabinofuranoside as a substrate of β-L-arabinofuranosidase
S. Kaeothip, A. Ishiwata, T. Ito, S. Fushinobu, K. Fujita, and Y. Ito
Carbohydr. Res. 382, 95-100 (2013)Effectiveness of heat treatment to protect introduced denitrifying bacteria from eukaryotic predatory microorganisms in a pilot-scale bioreactor
W. Ikeda-Ohtsubo, M. Miyahara, T. Yamada, A. Watanabe, S. Fushinobu, T. Wakagi, H. Shoun, K. Miyauchi, and G. Endo
J. Biosci. Bioeng. 116 (6), 722-724 (2013)Bioaugmentation of a wastewater bioreactor system with the nitrous oxide-reducing denitrifier Pseudomonas stutzeri strain TR2
W. Ikeda-Ohtsubo, M. Miyahara, S.-W. Kim, T. Yamada, M. Matsuoka, A. Watanabe, S. Fushinobu, T. Wakagi, H. Shoun, K. Miyauchi, and G. Endo
J. Biosci. Bioeng. 115 (1), 37-42 (2013)
Multiple rewards from a treasure trove of novel glycoside hydrolase and polysaccharide lyase structures: new folds, mechanistic details, and evolutionary relationships
S. Fushinobu, V. D. Alves, and P. M. Coutinho
Curr. Opin. Struct. Biol. 23 (5), 652-659 (2013)Aldolases - Distinctive Characters in Archaeal Enzymes
(アルドラーゼ-細菌酵素の特殊性)
T. Wakagi
Trends Glycosci. Glycotechnol. 25 (142), 71-81 (2013)麹菌由来のフェルラ酸エステラーゼの多様性とその応用
小関卓也、伏信進矢
日本醸造協会誌 108 (4), 204-210 (2013)
Diversity of feruloyl esterases from Koji-Mold and its applications
T. Koseki and S. Fushinobu
J. Brewing Soc. Japan 108 (4), 204-210 (2013) [Japanese]Phase-diagram-guided method for growth of a large crystal of glycoside hydrolase family 45 inverting cellulase suitable for neutron structural analysis
A. Nakamura, T. Ishida, S. Fushinobu, K. Kusaka, I. Tanaka, K. Inaka, Y. Higuchi, M. Masaki, K. Ohta, S. Kaneko, N. Niimura, K. Igarashi and M. Samajima
J. Synchrotron Rad. 20 (6), 859-863 (2013)