Bibliography of Shinya Fushinobu

Publications (original peer-reviewed articles in English)

*: Author for correspondence

  1. N. Fujio, C. Yamada, T. Kashima, E. Matsunaga, R.J. Nash, K. Takegawa, and S. Fushinobu*
    Crystal structure of β-D-galactofuranosidase from Streptomyces sp. JHA19 in complex with an inhibitor provides insights into substrate specificity
    FEBS Lett., in press (2024) [DOI] [PubMed] [9J6M, 9J6N]
  2. T. Kashima, M. Akama, T. Wakinaka, T. Arakawa, H. Ashida, and S. Fushinobu*
    Crystal structure of Bifidobacterium bifidum glycoside hydrolase family 110 α-galactosidase specific for blood group B antigen
    J. Appl. Glycosci. 71 (3), 81-90 (2024) [DOI] [PubMed] [8YK1, 8YK2, 8YK3]
  3. T. Sumida*, S. Hiraoka, K. Usui, A. Ishiwata, T. Sengoku, K.A. Stubbs, K. Tanaka, S. Deguchi, S. Fushinobu*, and T. Nunoura
    Genetic and functional diversity of β-N-acetylgalactosamine-targeting glycosidases expanded by deep-sea metagenome analysis
    Nat. Commun. 15, 3543 (2024) [DOI] [PubMed] [8K2F, 8K2G, 8K2H, 8K2I, 8K2J, 8K2K, 8K2L, 8K2M, 8K2N]
  4. A. Umezawa, M. Matsumoto, H. Handa, K. Nakazawa, M. Miyagawa, G.J. Seifert, D. Takahashi, S. Fushinobu*, and T. Kotake*
    Cytosolic UDP-L-arabinose synthesis by bifunctional UDP-glucose 4-epimerases in Arabidopsis
    Plant J. 119 (1), 508-524 (2024) [DOI] [PubMed] [8WOP, 8WOV, 8WOW]
  5. M. Kitaoka*, A. Takano, M. Takahashi, Y. Yamakawa, S. Fushinobu, and N. Yoshida
    Molecular basis of absorption at 340 nm of 3-ketoglucosides under alkaline conditions
    J. Appl. Glycosci. 71 (1), 9-13 (2024) [DOI] [PubMed]
  6. Z. Liao, C.C. Gopalasingam, M. Kameya, C. Gerle, H. Shigematsu, M. Ishii, T. Arakawa*, and S. Fushinobu*
    Structural insights into thermophilic chaperonin complexes
    Structure 32 (6), 679-689 (2024) [DOI] [PubMed] [8WU4, 8WUC, 8WUW, 8WUX; EMDB: EMD-37850, EMD-37853, EMD-37862, EMD-37863; EMPIAR: EMPIAR-11901, EMPIAR-11900]
  7. N. Yano*, T. Kondo, K. Kusaka, T. Arakawa, T. Sakamoto, and S. Fushinobu*
    Charge neutralization and β-elimination cleavage mechanism of family 42 L-rhamnose-α-1,4-D-glucuronate lyase revealed using neutron crystallography
    J. Biol. Chem. 300 (3), 105774 (2024) [DOI] [PubMed] [7YQS, 8I4D; XRDA: 7yqs, 8i4d]
  8. S. Miyaji, T. Ito, T. Kitaiwa, K. Nishizono, S.I. Agake, H. Harata, H. Aoyama, M. Umahashi, M. Sato, J. Inaba, S. Fushinobu, T. Yokoyama, A. Maruyama-Nakashita, M.Y. Hirai, N. Ohkama-Ohtsu*
    N2-Acetylornithine deacetylase functions as a Cys-Gly dipeptidase in the cytosolic glutathione degradation pathway in Arabidopsis thaliana
    Plant. J. 118 (5), 1603-1618 (2024) [DOI] [PubMed]
  9. K. Fujita*, H. Tsunomachi, L. Pan, S. Maruyama, M. Miyake, A. Dakeshita, K. Kitahara, K. Tanaka, Y. Ito, A. Ishiwata, and S. Fushinobu*
    Bifidobacterial GH146 β-L-arabinofuranosidase for the removal of β1,3-L-arabinofuranosides on plant glycans
    Appl. Microbiol. Biotechnol. 108, 199 (2024) [DOI] [PubMed] [8K7X, 8K7Y; XRDA: 8k7x, 8k7y]
  10. T. Miyamoto*, S. Fushinobu, Y. Saitoh, M. Sekine, M. Katane, K. Sakai-Kato, and H. Homma*
    Novel tetrahydrofolate-dependent D-serine dehydratase activity of serine hydroxymethyltransferases
    FEBS J. 291 (2), 308-322 (2024) [DOI] [PubMed]
  11. N. Katsuki, R. Fukushima, Y. Doi, S. Masuo, T. Arakawa, C. Yamada, S. Fushinobu*, and N. Takaya*
    Protocatechuate hydroxylase is a novel group A flavoprotein monooxygenase with a unique substrate recognition mechanism
    J. Biol. Chem. 300 (1), 105508 (2023) [DOI] [PubMed] [8JQO, 8JQP, 8JQQ; XRDA: 8jqo, 8jqp, 8jqq]
  12. M. Shimokawa, A. Ishiwata, T. Kashima, C. Nakashima, J. Li, R. Fukushima, N. Sawai, M. Nakamori, Y. Tanaka, A. Kudo, S. Morikami, N. Iwanaga, G. Akai, N. Shimizu, T. Arakawa, C. Yamada, K. Kitahara, K. Tanaka, Y. Ito, S. Fushinobu*, and K. Fujita*
    Identification and characterization of endo-α-, exo-α-, and exo-β-D-arabinofuranosidases degrading lipoarabinomannan and arabinogalactan of mycobacteria
    Nat. Commun. 14, 5803 (2023) [DOI] [PubMed] [8HHV, 8IC1, 8IC8, 8IC6, 8IC7; SASDB: SASDQQ8; XRDA: 8hhv, 8ic6, 8ic7]
  13. A. Gotoh, M. Hidaka, H. Sakurama, M. Nishimoto, M. Kitaoka, M. Sakanaka, S. Fushinobu*, and T. Katayama*
    Substrate recognition mode of a glycoside hydrolase family 42 β-galactosidase from Bifidobacterium longum subspecies infantis(BiBga42A) revealed by crystallographic and mutational analyses
    Microbiome Res. Rep. 2, 20 (2023) [DOI] [PubMed] [8IBR, 8IBS, 8IBT; XRDA: 8ibr, 8ibs, 8ibt]
  14. T. Katoh, C. Yamada, W.D. Wallace, A. Yoshida, A. Gotoh, M. Arai, T. Maeshibu, T. Kashima, A. Hagenbeek, M.N. Ojima, H. Takada, M. Sakanaka, H. Shimizu, K. Nishiyama, H. Ashida, J. Hirose, M. Suarez-Diez, M. Nishiyama, I. Kimura, K.A. Stubbs, S. Fushinobu*, and T. Katayama*
    A bacterial sulfoglycosidase highlights mucin O-glycan breakdown in the gut ecosystem
    Nat. Chem. Biol. 19 (6), 778-789 (2023) [DOI] [PubMed] [7WDT, 7WDU; XRDA: 7wdt, 7wdu]
  15. Q. Gao, B. Ma, Q. Wang, H. Zhang, S. Fushinobu, J. Yang, S. Lin, K. Sun, B.-N. Han, and L.-H. Xu*
    Improved 2α-hydroxylation efficiency of steroids by CYP154C2 using structure-guided rational design
    Appl. Environ. Microbiol. 89 (3), e02186-22 (2023) [DOI] [PubMed] [7CL8]
  16. A. Ishiwata*, S. Narita, K. Kimura, K. Tanaka, K. Fujita, S. Fushinobu, and Y. Ito*
    Mechanism-based inhibition of GH127/146 cysteine glycosidases by stereospecifically functionalized L-arabinofuranosides
    Bioorg. Med. Chem. 75, 117054 (2022) [DOI] [PubMed]
  17. T. Ito, T. Kitaiwa, K. Nishizono, M. Umahashi, S. Miyaji, S.I. Agake, K. Kuwahara, T. Yokoyama, S. Fushinobu, A. Maruyama-Nakashita, R. Sugiyama, M. Sato, J. Inaba, M.Y. Hirai, and N. Ohkama-Ohtsu*
    Glutathione degradation activity of γ-glutamyl peptidase 1 manifests its dual roles in primary and secondary sulfur metabolism in Arabidopsis
    Plant J. 111 (6), 1626-1642 (2022) [DOI] [PubMed]
  18. A. Ishiwata*, K. Fujita, S. Fushinobu, K. Tanaka, and Y. Ito*
    Synthesis of naturally occurring β-L-arabinofuranosyl-L-arabinofuranoside structures towards the substrate specificity evaluation of β-L-arabinofuranosidase
    Bioorg. Med. Chem. 68, 116849 (2022) [DOI] [PubMed]
  19. C. Yamada*, T. Katayama, and S. Fushinobu*
    Crystal structures of glycoside hydrolase family 136 lacto-N-biosidases from monkey gut- and human adult gut bacteria
    Biosci. Biotechnol. Biochem. 86 (4), 464-475 (2022) [DOI] [PubMed] [7V6I, 7V6M]
  20. S. Maruyama, K. Sawano, S. Amaki, T. Suzuki, S. Narita, K. Kimura, T. Arakawa, C. Yamada, Y. Ito, N. Dohmae, K. Fujita, A. Ishiwata, and S. Fushinobu*
    Substrate complex structure, active site labeling and catalytic role of the zinc ion in cysteine glycosidase
    Glycobiology 32 (2), 171-180 (2022) [DOI] [PubMed] [7EXU, 7EXV, 7EXW; XRDA: 7exu]
  21. T. Kashima, K. Okumura, A. Ishiwata, M. Kaieda, T. Terada, T. Arakawa, C. Yamada, K. Shimizu, K. Tanaka, M. Kitaoka, Y. Ito, K. Fujita, and S. Fushinobu*
    Identification of a difructose dianhydride I synthase/hydrolase from oral bacterium establishes a novel glycoside hydrolase family
    J. Biol. Chem. 297 (5), 101324 (2021) [DOI] [PubMed] [7V1V, 7V1W, 7V1X; XRDA: 7V1v, 7V1w, 7V1x]
    EDITORS' PICK HIGHLIGHT A healthy Bifidobacterium dentium caramel cocktail. D. Teze and B. Svensson [DOI]
  22. T. Kondo, M. Kichijo, A. Maruta, M. Nakaya, S. Takenaka, T. Arakawa, S. Fushinobu, and T. Sakamoto*
    Structural and functional analysis of gum arabic L-rhamnose-α-1,4-D-glucuronate lyase establishes a novel polysaccharide lyase family
    J. Biol. Chem. 297 (3), 101001 (2021) [DOI] [PubMed] [7ESK, 7ESM, 7ESN, 7ESL]
  23. T. Kondo, M. Kichijo, M. Nakaya, S. Takenaka, T. Arakawa, T. Kotake, S. Fushinobu, and T. Sakamoto*
    Biochemical and structural characterization of a novel 4‐O‐α‐L‐rhamnosyl‐β‐D‐glucuronidase from Fusarium oxysporum
    FEBS J. 288 (16), 4918-4938 (2021) [DOI] [PubMed] [7DFQ, 7DFS]
  24. N.G.S. McGregor, J. Coines, V. Borlandelli, S. Amaki, M. Artola, A. Nin-Hill, D. Linzel, C. Yamada, T. Arakawa, A. Ishiwata, Y. Ito, G.A. van der Marel, J.D.C. Codée, S. Fushinobu, H.S. Overkleeft, C. Rovira*, and G.J. Davies*
    Cysteine nucleophiles in glycosidase catalysis: application of a covalent β-L-arabinofuranosidase inhibitor
    Angew. Chem.-Int. Edit. 60 (11), 5754-5758 (2021) [DOI, URL] [PubMed] [7DIF, 7BZL; XRDA: 7dif]
  25. M. Kohno, T. Arakawa, N. Sunagawa, T. Mori, K. Igarashi, T. Nishimoto, and S. Fushinobu*
    Molecular analysis of cyclic α-maltosyl-(1→6)-maltose binding protein in the bacterial metabolic pathway
    PLOS ONE 15 (11), e0241912 (2020) [DOI] [PubMed] [7BVT, XRDA: 7bvt]
  26. Y. Kuritani, K. Sato, H. Dohra, S. Umemura, M. Kitaoka, S. Fushinobu, and N. Yoshida*
    Conversion of levoglucosan into glucose by the coordination of four enzymes through oxidation, elimination, hydration, and reduction
    Sci. Rep. 10, 20066 (2020) [DOI] [PubMed]
  27. Y. Sato, T. Yabuki, N. Adachi, T. Moriya, T. Arakawa, M. Kawasaki, C. Yamada, T. Senda*, S. Fushinobu*, and T. Wakagi*
    Crystallographic and cryogenic electron microscopic structures and enzymatic characterization of sulfur oxygenase reductase from Sulfurisphaera tokodaii
    J. Struct. Biol. :X 4, 100030 (2020) [DOI] [PubMed] [6M35, 6M3X, EMD-30073] -> [EMD-30362, EMPIAR-10546 2.05 Å]
  28. M.J. Pichler, C. Yamada, B. Shuoker, C. Alvarez-Silva, A. Gotoh, M.L. Leth, E. Schoof, T. Katoh, M. Sakanaka, T. Katayama, C. Jin, N.G. Karlsson, M. Arumugam, S. Fushinobu, and M. Abou Hachem*
    Butyrate producing colonic Clostridiales metabolise human milk oligosaccharides and cross feed on mucin via conserved pathways
    Nat. Commun. 11, 3285 (2020) [DOI] [PubMed] [6KQS, 6KQT]
  29. K. Saito, A.H. Viborg, S. Sakamoto, T. Arakawa, C. Yamada, K. Fujita, and S. Fushinobu*
    Crystal structure of β-L-arabinobiosidase belonging to glycoside hydrolase family 121
    PLOS ONE 15 (6), e0231513 (2020) [DOI] [PubMed] [6M5A; XRDA: 6m5a]
  30. D. Du, Y. Katsuyama*, M. Horiuchi, S. Fushinobu, A. Chen, T. D. Davis, M D. Burkart*, and Y. Ohnishi
    Structural basis for selectivity in a highly reducing type II polyketide synthase
    Nat. Chem. Biol. 16 (7), 776–782 (2020) [DOI] [PubMed] [6KXD, 6KXE, 6KXF]
  31. M. Miyake, T. Terada*, M. Shimokawa, N. Sugimoto, T. Arakawa, K. Shimizu, K., Igarashi, K. Fujita, and S. Fushinobu*
    Structural analysis of β‐L‐arabinobiose binding protein in the metabolic pathway of hydroxyproline‐rich glycoproteins in Bifidobacterium longum
    FEBS J. 287 (23), 5114-5129 (2020) [DOI] [PubMed] [6LCE, 6LCF]
  32. S. Shizukuishi, M. Ogawa*, S. Matsunaga, M. Tomokiyo, T. Ikebe, S. Fushinobu, A. Ryo, and M. Ohnishi
    Streptococcus pneumoniae hijacks host autophagy by deploying CbpC as a decoy for Atg14 depletion
    EMBO Reports e49232 (2020) [DOI] [PubMed]
  33. T. Arakawa*, Y. Sato, M. Yamada, J. Takabe, Y. Moriwaki, N. Masamura, M. Kato, M. Aoyagi, T. Kamoi, T. Terada, K. Shimizu, N. Tsuge, S. Imai, and S. Fushinobu
    Dissecting the stereocontrolled conversion of short-lived sulfenic acid by lachrymatory factor synthase
    ACS Catal. 10 (1), 9-19 (2020) [DOI] [PubMed] [5GTE, 5GTF, 5GTG, 6IES]
  34. Q. Wang, B. Ma, S. Fushinobu, C. Zhang*, and L.-H. Xu*
    Regio- and stereoselective hydroxylation of testosterone by a novel cytochrome P450 154C2 from Streptomyces avermitilis
    Biochem. Biophys. Res. Commun. 522 (2), 335-361 (2020) [DOI] [PubMed] [6L69]
  35. Y. Moriwaki*, M. Yato, T. Terada, S. Saito, N. Nukui, T. Iwasaki, T. Nishi, Y. Kawaguchi, K. Okamoto, T. Arakawa, C. Yamada, S. Fushinobu*, and K. Shimizu
    Understanding the molecular mechanism underlying the high catalytic activity of p-hydroxybenzoate hydroxylase mutants for producing gallic acid
    Biochemistry 58 (45), 4543-4558 (2019) [DOI] [PubMed] [6JU1]
  36. H. Seki, Y. Huang, T. Arakawa, C. Yamada, T. Kinoshita, S. Iwamoto, Y. Higuchi, K. Takegawa, and S. Fushinobu*
    Structural basis for the specific cleavage of core-fucosylated N-glycans by endo-β-N-acetylglucosaminidase from the fungus Cordyceps militaris
    J. Biol. Chem. 294 (45), 17143-17154 (2019) [DOI] [PubMed] [6KPL, 6KPM, 6KPN, 6KPO]
  37. Y.-W. Nam, M. Nishimoto, T. Arakawa, M. Kitaoka, and S. Fushinobu*
    Structural basis for broad substrate specificity of UDP-glucose 4-epimerase in the human milk oligosaccharide catabolic pathway of Bifidobacterium longum
    Sci. Rep. 9, 11081 (2019) [DOI] [PubMed] [6K0G, 6K0H, 6K0I]
  38. M. Sugiura, M. Nakahara, C. Yamada, T. Arakawa, M. Kitaoka, and S. Fushinobu*
    Identification, functional characterization, and crystal structure determination of bacterial levoglucosan dehydrogenase
    J. Biol. Chem. 293 (45), 17375-17386 (2018) [DOI] [PubMed] [6A3F, 6A3G, 6A3I, 6A3J]
  39. M. Kohno, T. Arakawa, H. Ota, T. Mori, T. Nishimoto, and S. Fushinobu*
    Structural features of a bacterial cyclic α-maltosyl-(1→6)-maltose (CMM) hydrolase critical for CMM recognition and hydrolysis
    J. Biol. Chem. 293 (43), 16874-16888 (2018) [DOI] [PubMed] [5ZXG, 6A0L, 6A0K, 6A0J]
  40. Y. Higuchi, H. Matsufuji, M. Tanuma, T. Arakawa, K. Mori, C. Yamada, R. Shofia, E. Matsunaga, K. Tashiro, S. Fushinobu, and K. Takegawa*
    Identification and characterization of a novel β-D-galactosidase that releases pyruvylated galactose
    Sci. Rep. 8 (1), 12013 (2018) [DOI] [PubMed] [5YHS, 5YIF]
  41. J. W. Chang, Y. Sato, T. Ogawa, T. Arakawa, S. Fukai, S. Fushinobu*, and H. Masaki*
    Crystal structure of the central and the C-terminal RNase domains of colicin D implicated its translocation pathway through inner membrane of target cell
    J. Biochem. 164 (5), 329-339 (2018) [DOI] [PubMed] [5ZNM] Cover Illustration of This Issue
  42. K. Abe, N. Sunagawa, T. Terada, Y. Takahashi, T. Arakawa, K. Igarashi, M. Samejima, H. Nakai, H. Taguchi, M. Nakajima, and S. Fushinobu*
    Structural and thermodynamic insights into β-1,2-glucooligosaccharide capture by a solute-binding protein in Listeria innocua
    J. Biol. Chem. 293 (23), 8812-8828 (2018) [DOI] [PubMed] [5YSB, 5YSD, 5YSE, 5YSF]
  43. D. Im, D. Matsui, T. Arakawa, K. Isobe, Y. Asano*, and S. Fushinobu*
    Ligand complex structures of L-amino acid oxidase/monooxygenase from Pseudomonas sp. AIU 813 and its conformational change
    FEBS Open Bio 8 (3), 314-324 (2018) [DOI] [PubMed] [5YB6, 5YB7, 5YB8] Cover Illustration of This Issue
  44. K. Suzuki, M. Michikawa, H. Sato, M. Yuki, K. Kamino, W. Ogasawara, S. Fushinobu, and S. Kaneko
    Purification, cloning, functional expression, structure, and characterization of a thermostable β-mannanase from Talaromyces trachyspermus B168 and its efficiency in production of mannooligosaccharides from coffee wastes
    J. Appl. Glycosci. 65 (2), 13-21 (2018) [DOI] [PubMed] [3WFL]
  45. A.H. Viborg, T. Katayama, T. Arakawa, M. Abou Hachem, L. Lo Leggio, M. Kitaoka, B. Svensson, and S. Fushinobu*
    Discovery of α-L-arabinopyranosidases from human gut microbiome expands the diversity within glycoside hydrolase family 42
    J. Biol. Chem. 292 (51), 21092-21101 (2017) [DOI] [PubMed] [5XB7]
  46. D. Komiya, A. Hori, T. Ishida, K. Igarashi, M. Samejima, T. Koseki, and S. Fushinobu*
    Crystal structure and substrate specificity modification of acetyl xylan esterase from Aspergillus luchuensis
    Appl. Environ. Microbiol. 83 (20), e01251-17 (2017) [DOI] [PubMed] [5X6S] [Kudos]
  47. M. Sato, D. Liebschner, Y. Yamada, N. Matsugaki, T. Arakawa, S. S. Wills, M. Hattie, K. A. Stubbs, T. Ito, T. Senda, H. Ashida, and S. Fushinobu*
    The first crystal structure of a family 129 glycoside hydrolase from a probiotic bacterium reveals critical residues and metal cofactors
    J. Biol. Chem. 292 (29), 12126-12138 (2017) [DOI] [PubMed] [5WZN, 5WZP, 5WZQ, 5WZR] [UTR]
  48. C. Yamada, A. Gotoh, M. Sakanaka, M. Hattie, K. A. Stubbs, A. Katayama-Ikegami, J. Hirose, S. Kurihara, T. Arakawa, M. Kitaoka, S. Okuda, T. Katayama*, and S. Fushinobu*
    Molecular insight into evolution of symbiosis between breast-fed infants and a member of the human gut microbiome Bifidobacterium longum
    Cell Chem. Biol. 24 (4), 515-524 (2017) [DOI] [PubMed] [5GQC, 5GQF, 5GQG] [EA!] [SciMag] [BiotechAsia]
  49. K. Abe, M. Nakajima, T. Yamashita, H. Matsunaga, S. Kamisuki, T. Nihira, Y. Takahashi, N. Sugimoto, A. Miyanaga, H. Nakai, T. Arakawa, S. Fushinobu, and H. Taguchi
    Biochemical and structural analyses of a bacterial endo-β-1,2-glucanase reveal a new glycoside hydrolase family
    J. Biol. Chem. 292 (18), 7487-7506 (2017) [DOI] [PubMed] [5GZH, 5GZK]
  50. Q. Yao, L. Ma, L. Liu, H. Ikeda, S. Fushinobu, S. Li, and L.-H. Xu
    Hydroxylation of compactin (ML-236B) by CYP105D7 (SAV_7469) from Streptomyces avermitilis
    J. Microbiol. Biotechnol. 27 (5), 956-964 (2017) [DOI] [PubMed]
  51. M. Nakajima, N. Tanaka, N. Furukawa, T. Nihira, Y. Kodutsumi, Y. Takahashi, N. Sugimoto, A. Miyanaga, S. Fushinobu, H. Taguchi, H. Nakai
    Mechanistic insight into the substrate specificity of 1,2-β-oligoglucan phosphorylase from Lachnoclostridium phytofermentans
    Sci Rep. 7, 42671 (2017) [DOI] [PubMed] [5H3Z, 5H40, 5H41, 5H42]
  52. C. Yamada, K. Sawano, N. Iwase, M. Matsuoka, T. Arakawa, S. Nishida, and S. Fushinobu*
    Isolation and characterization of a thermostable lipase from Bacillus thermoamylovorans NB501
    J. Gen. App. Microbiol. 62 (6), 313-319 (2016) [DOI] [PubMed]
  53. Z. Yan, A. Maruyama, T. Arakawa, S. Fushinobu, and T. Wakagi
    Crystal structures of archaeal 2-oxoacid:ferredoxin oxidoreductases from Sulfolobus tokodaii
    Sci. Rep. 6, 33061 (2016) [DOI] [PubMed] [5B46, 5B47, 5B48; XRDA: 5b48] [UTR]
  54. L. Liu, Q. Yao, Z. Ma, H. Ikeda, S. Fushinobu, and L.-H. Xu
    Hydroxylation of flavanones by Cytochrome P450 105D7 from Streptomyces avermitilis
    J. Mol. Catal. B: Enzymatic 132, 91-97 (2016) [DOI]
  55. T. Matsuzawa, T. Jo, T. Uchiyama, J. A. Manninen, T. Arakawa, K. Miyazaki, S. Fushinobu, and K. Yaoi
    Crystal structure and identification of a key amino acid for glucose tolerance, substrate specificity and transglycosylation activity of metagenomic β-glucosidase Td2F2
    FEBS J. 283 (12), 2340-2353 (2016) [DOI] [PubMed] [3WH5, 3WH6, 3WH7, 3WH8, 5AYB, 5AYI]
  56. T. Wakagi, H. Nishimasu, M. Miyake, and S. Fushinobu
    Archaeal Mo-containing glyceraldehyde oxidoreductase isozymes exhibit diverse substrate specificities through unique subunit assemblies
    PLOS ONE 11 (1), e0147333 (2016) [DOI] [PubMed] [4ZOH]
  57. Y. Honda, S. Arai, K. Suzuki, M. Kitaoka, and S. Fushinobu
    The crystal structure of an inverting glycoside hydrolase family 9 exo-β-D-glucosaminidase and the design of glycosynthase
    Biochem. J. 473 (4), 463-472 (2016) [DOI] [PubMed] [5DGQ, 5DGR]
  58. T. Tsuda, T. Nihira, K. Chiku, E. Suzuki, T. Arakawa, M. Nishimoto, M. Kitaoka, H. Nakai*, and S. Fushinobu*
    Characterization and crystal structure determination of β-1,2-mannobiose phosphorylase from Listeria innocua
    FEBS Lett. 589 (24B), 3816-3821 (2015) [DOI] [PubMed] [5B0P, 5B0Q, 5B0R, 5B0S]
  59. T. Nihira, K. Chiku, E. Suzuki, M. Nishimoto, S. Fushinobu, M. Kitaoka, K. Ohtsubo, and H. Nakai
    An inverting β-1,2-mannosidase belonging to glycoside hydrolase family 130 from Dyadobacter fermentans
    FEBS Lett. 589 (23), 3604-3610 (2015) [DOI] [PubMed]
  60. M. Hattie, T. Ito, A. W. Debowski, T. Arakawa, T. Katayama, K. Yamamoto, S. Fushinobu, and K. A. Stubbs
    Gaining insight into the catalysis by GH20 lacto-N-biosidase using small molecule inhibitors and structural analysis
    Chem. Commun. 51 (81), 15008-15011 (2015) [DOI] [PubMed] [5BXP, 5BXR, 5BXS, 5BXT]
  61. A. Nakamura, T. Ishida, K. Kusaka, T. Yamada, S. Fushinobu, I. Tanaka, S. Kaneko, K. Ohta, H. Tanaka, K. Inaka, Y. Higuchi, N. Niimura, M. Samejima, and K. Igarashi
    " Newton's cradle" proton relay with amide–imidic acid tautomerization in inverting cellulase visualized by neutron crystallography
    Science Adv. 1 (7), e1500263 (2015) [DOI] [PubMed]
  62. J. Li, J. Inoue, J. M. Choi, S. Nakamura, Z. Yan, S. Fushinobu, H. Kamada, H. Kato, T. Hashidume, M. Shimizu, R. Sato
    Identification of the flavonoid luteolin as a repressor of the transcription factor hepatocyte nuclear factor 4α
    J. Biol. Chem. 290 (39), 24021-24035 (2015) [DOI] [PubMed]
  63. Y.-W. Nam, T. Nihira, T. Arakawa, Y. Saito, M. Kitaoka, H. Nakai, and S. Fushinobu*
    Crystal structure and substrate recognition of cellobionic acid phosphorylase, which plays a key role in oxidative cellulose degradation by microbes
    J. Biol. Chem. 290 (30), 18281-18292 (2015) [DOI] [PubMed] [4ZLE, 4ZLF, 4ZLG, 4ZLI] [UTR]
  64. M. Sato, T. Arakawa, Y.-W. Nam, M. Nishimoto, M. Kitaoka, and S. Fushinobu*
    Open–close structural change upon ligand binding and two magnesium ions required for the catalysis of N-acetylhexosamine 1-kinase
    BBA - Proteins Proteom. 1854 (5), 333–340 (2015) [DOI] [PubMed] [4WH1, 4WH2, 4WH3]
  65. L.-H. Xu*, H. Ikeda, L. Liu, T. Arakawa, T. Wakagi, H. Shoun, and S. Fushinobu*
    Structural basis for the 4'-hydroxylation of diclofenac by a microbial cytochrome P450 monooxygenase
    Appl. Microbiol. Biotechnol. 99 (7), 3081-3091 (2015) [DOI] [PubMed] [4UBS]
  66. Y. Ikehara, K. Arai, N. Furukawa, T. Ohno, T. Miyake, S. Fushinobu, M. Nakajima, A. Miyanaga, H. Taguchi
    The core of allosteric motion in Thermus caldophilus L-lactate dehydrogenase
    J. Biol. Chem. 289 (45), 31550-31564 (2014) [DOI] [PubMed] [3VPG, 3VPH]
  67. K. Suzuki, A. Hori, K. Kawamoto, R. R. Thangudu, T. Ishida, K. Igarashi, M. Samejima, C. Yamada, T. Arakawa, T. Wakagi, T. Koseki, and S. Fushinobu*
    Crystal structure of a feruloyl esterase belonging to the tannase family: a disulfide bond near a catalytic triad
    Proteins: Struct. Funct. Bioinform. 82 (10), 2857-2867 (2014) [DOI] [PubMed] [3WMT]
  68. K. K. Touhara, T. Nihira, M. Kitaoka, H. Nakai, and S. Fushinobu*
    Structural basis for reversible phosphorolysis and hydrolysis reactions of 2-O-α-glucosylglycerol phosphorylase
    J. Biol. Chem. 289 (26), 18067-18075 (2014) [DOI] [PubMed] [4KTP, 4KTR]
  69. T. Ito, K. Saikawa, S. Kim, K. Fujita, A. Ishiwata, S. Kaeothip, T. Arakawa, T. Wakagi, G. T. Beckham, Y. Ito, and S. Fushinobu*
    Crystal structure of glycoside hydrolase family 127 β-L-arabinofuranosidase from Bifidobacterium longum
    Biochem. Biophys. Res. Commun. 447 (1), 32-37 (2014) [DOI] [PubMed] [3WKW, 3WKX]
  70. H. Tsukagoshi, A. Nakamura, T. Ishida, K.K. Touhara, M. Otagiri, S. Moriya, M. Samejima, K. Igarashi, S. Fushinobu, K. Kitamoto, and M. Arioka
    Structural and biochemical analyses of glycoside hydrolase family 26 β-mannanase from a symbiotic protist of the termite Reticulitermes speratus
    J. Biol. Chem. 289 (15), 10843-10852 (2014) [DOI] [PubMed] [3WDQ, 3WDR]
  71. D. Matsui, D.-H. Im, A. Sugawara, Y. Fukuta, S. Fushinobu, K. Isobe, and Y. Asano
    Mutational and crystallographic analysis of L-amino acid oxidase/monooxygenase from Pseudomonas sp. AIU 813: Interconversion between oxidase and monooxygenase activities
    FEBS Open Bio 4, 220-228 (2014) [DOI] [PubMed] [3WE0]
  72. F. Ito, M. Miyake, S. Fushinobu, S. Nakamura, K. Shimizu, and T. Wakagi
    Engineering the allosteric properties of archaeal non-phosphorylating glyceraldehyde-3-phosphate dehydrogenases
    BBA - Proteins Proteom. 1844 (4), 759-766 (2014) [DOI] [PubMed]
  73. Z. Yan, S. Fushinobu, and T. Wakagi
    Four Cys residues in heterodimeric 2-oxoacid:ferredoxin oxidoreductase are required for CoA-dependent oxidative decarboxylation but not for a non-oxidative decarboxylation
    BBA - Proteins Proteom. 1844 (4), 736-743 (2014) [DOI] [PubMed]
  74. S. Okada, T. Yamamoto, H. Watanabe, T. Nishimoto, H. Chaen, S. Fukuda, T. Wakagi, and S. Fushinobu*
    Structural and mutational analysis of substrate recognition in kojibiose phosphorylase
    FEBS J. 281 (3), 778-786 (2014) [DOI] [PubMed] [3WIR, 3WIQ]
  75. Z. Yan, Y.-W. Nam, S. Fushinobu, and T. Wakagi
    Sulfolobus tokodaii ST2133 is characterized as a thioredoxin reductase-like ferredoxin:NADP+ oxidoreductase
    Extremophiles 18 (1), 99-110 (2014) [DOI] [PubMed]
  76. S. Kaeothip, A. Ishiwata*, T. Ito, S. Fushinobu*, K. Fujita, and Y. Ito
    Preparation of p-nitrophenyl β-L-arabinofuranoside as a substrate of β-L-arabinofuranosidase
    Carbohydr. Res. 382, 95-100 (2013) [DOI] [PubMed]
  77. W. Ikeda-Ohtsubo, M. Miyahara, T. Yamada, A. Watanabe, S. Fushinobu, T. Wakagi, H. Shoun, K. Miyauchi, and G. Endo
    Effectiveness of heat treatment to protect introduced denitrifying bacteria from eukaryotic predatory microorganisms in a pilot-scale bioreactor
    J. Biosci. Bioeng. 116 (6), 722-724 (2013) [PubMed]
  78. F. Ito, H. Chishiki, S. Fushinobu, and T. Wakagi
    Archaeal aldehyde dehydrogenase ST0064 from Sulfolobus tokodaii, a paralog of non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase, is a succinate semialdehyde dehydrogenase
    Biosci. Biotechnol. Biochem. 77 (6), 1344-1348 (2013) [PubMed]
  79. K. Suzuki, J.-I. Sumitani, Y.-W. Nam, T. Nishimaki, S. Tani, T. Wakagi, T. Kawaguchi, and S. Fushinobu*
    Crystal structures of glycoside hydrolase family 3 β-glucosidase 1 from Aspergillus aculeatus
    Biochem. J. 452 (2), 211-221 (2013) [PubMed] [4IIB, 4IIC, 4IID, 4IIE, 4IIF, 4IIG, 4IIH]
  80. T. Ito, T. Katayama, M. Hattie, H. Sakurama, J. Wada, R. Suzuki, H. Ashida, T. Wakagi, K. Yamamoto, K. A. Stubbs, and S. Fushinobu*
    Crystal structures of a glycoside hydrolase family 20 lacto-N-biosidase from Bifidobacterium bifidum
    J. Biol. Chem. 288 (17), 11795-11806 (2013) [PubMed] [4H04, 4JAW]
  81. W. Ikeda-Ohtsubo, M. Miyahara, S.-W. Kim, T. Yamada, M. Matsuoka, A. Watanabe, S. Fushinobu, T. Wakagi, H. Shoun, K. Miyauchi, and G. Endo
    Bioaugmentation of a wastewater bioreactor system with the nitrous oxide-reducing denitrifier Pseudomonas stutzeri strain TR2
    J. Biosci. Bioeng. 115 (1), 37-42 (2013) [PubMed]
  82. F. Ito, H. Chishiki, S. Fushinobu, and T. Wakagi
    Comparative analysis of two glyceraldehyde-3-phosphate dehydrogenases from a thermoacidophilic archaeon, Sulfolobus tokodaii
    FEBS Lett. 586 (19), 3097-3103 (2012) [PubMed]
  83. S. Inoue-Ito, S. Yajima, S. Fushinobu, S. Nakamura, T. Ogawa, M. Hidaka, and H. Masaki
    Identification of the catalytic residues of sequence-specific and histidine-free ribonuclease colicin E5
    J. Biochem. 152 (4), 365-372 (2012) [PubMed] [3AO9, 3VJ7]
  84. H. Sakurama, S. Fushinobu, M. Hidaka, E. Yoshida, Y. Honda, H. Ashida, M. Kitaoka, H. Kumagai, K. Yamamoto, and T. Katayama
    1,3-1,4-α-L-Fucosynthase that specifically introduces Lewis a/x antigens into type-1/2 chains
    J. Biol. Chem. 287 (20), 16709-16719 (2012) [PubMed] [3UES, 3UET]
  85. M. Miyahara, S.-W. Kim, S. Zhou, S. Fushinobu, T. Yamada, W. Ikeda-Ohtsubo, A. Watanabe, K. Miyauchi, G. Endo, T. Wakagi, and H. Shoun
    Survival of the aerobic denitrifier Pseudomonas stutzeri Strain TR2 during co-culture with activated sludge under denitrifying conditions
    Biosci. Biotechnol. Biochem. 76 (3), 495-500 (2012) [PubMed]
  86. D.-H. Im, K. Kimura, F. Hayasaka, T. Tanaka, M. Noguchi, A. Kobayashi, S. Shoda, K. Miyazaki, T. Wakagi, and S. Fushinobu*
    Crystal structures of glycoside hydrolase family 51 α-L-arabinofuranosidase from Thermotoga maritima
    Biosci. Biotechnol. Biochem. 76 (2), 423-428 (2012) [PubMed] [3UG3, 3UG4, 3UG5] B.B.B. Article Award 2012
  87. Y. Sato, M. Kameya, S. Fushinobu, T. Wakagi, H. Arai, M. Ishii, and Y. Igarashi
    A novel enzymatic system against oxidative stress in the thermophilic hydrogen-oxidizing bacterium Hydrogenobacter thermophilus
    PLOS ONE 7 (4), e34825 (2012) [DOI] [PubMed]
  88. M. Kiyohara, T. Nakatomi, S. Kurihara, S. Fushinobu, H. Suzuki, T. Tanaka, S.-I. Shoda, M. Kitaoka, T. Katayama, K. Yamamoto, and H. Ashida
    An α-N-acetylgalactosaminidase from infant-associated bifidobacteria belonging to a novel glycoside hydrolase family 129 is implicated in an alternative mucin degradation pathway
    J. Biol. Chem. 287 (1), 693-700 (2012) [PubMed]
  89. M. Nishimoto, M. Hidaka, M. Nakajima, S. Fushinobu, and M. Kitaoka
    Identification of amino acid residues that determine the substrate preference of 1,3-β-galactosyl-N-acetylhexosamine phosphorylase
    J. Mol. Catal. B: Enzymatic 74 (1-2), 97-102 (2012) [PubMed]
  90. M. Matsuoka, S. Park, S.-Y. An, M. Miyahara, S.-W. Kim, K. Kamino, S. Fushinobu, A. Yokota, T. Wakagi, and H. Shoun
    Advenella faeciporci sp. nov., a nitrite-denitrifying bacterium isolated from nitrifying-denitrifying activated sludge collected from a laboratory-scale bioreactor treating piggery wastewater
    Int. J. Syst. Evol. Microbiol. 62 (12), 2986-2990 (2012) [PubMed]
  91. S. Fushinobu, H. Nishimasu, D. Hattori, H.-J. Song, and T. Wakagi
    Structural basis for the bifunctionality of fructose-1,6-bisphosphate aldolase/phosphatase
    Nature 478 (7370), 538-541 (2011) [PubMed] [3R1M]
  92. K. Arai, J. Ichikawa, S. Nonaka, A. Miyanaga, H. Uchikoba, S. Fushinobu, and H. Taguchi
    A molecular design that stabilizes active state in bacterial allosteric L-lactate dehydrogenases
    J. Biochem. 150 (5), 579-591 (2011) [PubMed]
  93. S. Fushinobu*, T. Uno, M. Kitaoka, K. Hayashi, H. Matsuzawa, and T. Wakagi
    Mutational analysis of fungal family 11 xylanases on pH optimum determination
    J. Appl. Glycosci. 58 (3), 107-114 (2011) [PubMed] [3RI8, 3RI9]
  94. S. Fushinobu*, M. Hidaka, A. M. Hayashi, T. Wakagi, H. Shoun and M. Kitaoka
    Interactions between glycoside hydrolase family 94 cellobiose phosphorylase and glucosidase inhibitors
    J. Appl. Glycosci. 58 (3), 91-97 (2011) [PubMed] [3QFY, 3QFZ, 3QG0]
  95. S. Takamatsu, L.-H. Xu, S. Fushinobu, H. Shoun, M. Komatsu, D. Cane, and H. Ikeda
    Pentalenic acid is a shunt metabolite in the biosynthesis of the pentalenolactone family of metabolites: Hydroxylation of 1-deoxypentalenic acid mediated by CYP105D7 of Streptomyces avermitilis
    J. Antibiot. 64 (1), 65-71 (2011) [PubMed]
  96. S. Zhou, S. Fushinobu, S.-W. Kim, Y. Nakanishi, J.-I. Maruyama, K. Kitamoto, T. Wakagi, and H. Shoun
    Functional analysis and subcellular location of two flavohemoglobins from Aspergillus oryzae
    Fungal Genet. Biol. 48 (2), 200-207 (2011) [PubMed]
  97. R. Suzuki, T. Katayama, B.-J. Kim, T. Wakagi, H. Shoun, H. Ashida, K. Yamamoto, and S. Fushinobu*
    Crystal Structures of phosphoketolase: thiamine diphosphate-dependent dehydration mechanism
    J. Biol. Chem. 285 (44), 34279-34287 (2010) [PubMed] [3AHC, 3AHD, 3AHE, 3AHF, 3AHG, 3AHH, 3AHI, 3AHJ]
  98. R. Suzuki, B.-J. Kim, T. Shibata, Y. Iwamoto, T. Katayama, H. Ashida, T. Wakagi, H. Shoun, S. Fushinobu*, and K. Yamamoto
    Overexpression, crystallization and preliminary X-ray analysis of xylulose-5-phosphate/fructose-6-phosphate phosphoketolase from Bifidobacterium breve
    Acta Cryst. F66 (8), 941-943 (2010) [PubMed]
  99. E. Yoshida, M. Hidaka, S. Fushinobu, T. Koyanagi, H. Minami, H. Tamaki, M. Kitaoka, T. Katayama, and H. Kumagai
    Role of a PA14 domain in determining substrate specificity of a glycoside hydrolase family 3 β-glucosidase from Kluyveromyces marxianus
    Biochem. J. 431 (1), 39-49 (2010) [PubMed] [3ABZ, 3AC0]
    Featured on CFG/nature's functional glycmics gateway
  100. S.-W. Kim, S. Fushinobu, S. Zhou, T. Wakagi, and H. Shoun
    The possible involvement of copper-containing nitrite reductase (NirK) and flavohemoglobin in denitrification by the fungus Cylindrocarpon tonkinense
    Biosci. Biotechnol. Biochem. 74 (7), 1403-1407 (2010) [PubMed]
  101. M. Miyahara, S.-W. Kim, S. Fushinobu, K. Takaki, T. Yamada, A. Watanabe, K. Miyauchi, G. Endo, T. Wakagi, and H. Shoun
    Potential of aerobic denitrification by Pseudomonas stutzeri TR2 to reduce nitrous oxide emissions from wastewater treatment plants
    Appl. Environ. Microbiol. 76 (14), 4619-4625 (2010) [PubMed]
  102. L.-H. Xu, S. Fushinobu, S. Takamatsu, T. Wakagi, H. Ikeda, and H. Shoun
    Regio- and stereospecificity of filipin hydroxylation sites revealed by crystal structures of cytochrome P450 105P1 and 105D6 from Streptomyces avermitilis
    J. Biol. Chem. 285 (22), 16844-16853 (2010) [PubMed] [3ABA, 3ABB]
  103. S. Zhou, S. Fushinobu, S.-W. Kim, Y. Nakanishi, T. Wakagi, and H. Shoun
    Aspergillus oryzae flavohemoglobins promote oxidative damage by hydrogen peroxide
    Biochem. Biophys. Res. Comm. 394 (3), 558-561 (2010) [PubMed]
  104. Y. Nakanishi, S. Zhou, S.-W. Kim, S. Fushinobu, J. Maruyama, K. Kitamoto, T. Wakagi, and H. Shoun
    A eukaryotic copper-containing nitrite reductase derived from a NirK homolog gene of Aspergillus oryzae
    Biosci. Biotechnol. Biochem. 74 (5), 984-991 (2010) [PubMed]
  105. K. Tsukimoto, R. Takada, Y. Araki, K. Suzuki, S. Karita, T. Wakagi, H. Shoun, T. Watanabe, and S. Fushinobu*
    Recognition of cellooligosaccharides by a family 28 carbohydrate-binding module
    FEBS Lett. 584 (6), 1205-1211 (2010) [PubMed] [3ACF, 3ACG, 3ACH, 3ACI]
  106. S.-W. Kim, M. Miyahara, S. Fushinobu, T. Wakagi, and H. Shoun
    Nitrous oxide emission from nitrifying activated sludge dependent on denitrification by ammonia-oxidizing bacteria
    Bioresour. Technol. 101 (11), 3958-3963 (2010) [PubMed]
  107. T. Koseki, K. Mochizuki, H. Kisara, A. Miyanaga, S. Fushinobu, T. Murayama, and Y. Shiono
    Characterization of a chimeric enzyme comprising feruloyl esterase and family 42 carbohydrate-binding module
    Appl. Microbiol. Biotechnol. 86 (1), 155-161 (2010) [PubMed]
  108. M. Hidaka, S. Fushinobu, Y. Honda, T. Wakagi, H. Shoun, and M. Kitaoka
    Structural explanation for the acquisition of glycosynthase activity
    J. Biochem. 147 (2), 237-244 (2010) [PubMed] [2DRO, 2DRQ, 2DRR, 2DRS, 3A3V]
  109. K. Arai, T. Ishimitsu, S. Fushinobu, H. Uchikoba, H. Matsuzawa, and H. Taguchi
    Active and inactive state structures of unliganded Lactobacillus casei allosteric L-lactate dehydrogenase
    Proteins: Struct. Funct. Bioinform. 78 (3), 681-694 (2010) [PubMed] [2DQY, 2ZQZ]
  110. E. Yoshida, M. Hidaka, S. Fushinobu, T. Koyanagi, H. Minami, H. Tamaki, M. Kitaoka, T. Katayama, and H. Kumagai
    Purification, crystallization and preliminary X-ray analysis of β-glucosidase from Kluyveromyces marxianus NBRC1777
    Acta Cryst. F65 (11), 1190-1192 (2009) [PubMed]
  111. R. Suzuki, T. Katayama, M. Kitaoka, H. Kumagai, T. Wakagi, H. Shoun, H. Ashida, K. Yamamoto, and S. Fushinobu*
    Crystallographic and mutational analyses of substrate recognition of endo-α-N-acetylgalactosaminidase from Bifidobacterium longum
    J. Biochem. 146 (3), 389-398 (2009) [PubMed] [2ZXQ]
  112. A. Yoshida, T. Tomita, H. Kono, S. Fushinobu, T. Kuzuyama, and M. Nishiyama
    Crystal structures of the regulatory subunit of Thr-sensitive aspartate kinase from Thermus thermophilus
    FEBS J. 276 (11), 3124-3136 (2009) [PubMed] [2DT9, 2ZHO]
  113. S.-W. Kim, S. Fushinobu, S. Zhou, T. Wakagi, and H. Shoun
    Eukaryotic nirK genes encoding copper-containing nitrite reductase: originating from the protomitochondrion?
    Appl. Environ. Microbiol. 75 (9), 2652-2658 (2009) [PubMed]
  114. N. Konno, T. Ishida, K. Igarashi, S. Fushinobu*, N. Habu, M. Samejima, and A. Isogai
    Crystal structure of polysaccharide lyase family 20 endo-β-1,4-glucuronan lyase from the filamentous fungus Trichoderma reesei
    FEBS Lett. 583 (8), 1323-1326 (2009) [PubMed] [2ZZJ]
  115. T. Ishida, S. Fushinobu, R. Kawai, M. Kitaoka, K. Igarashi, and M. Samejima
    Crystal structure of glycoside hydrolase family 55 β-1,3-glucanase from the basidiomycete Phanerochaete chrysosporium
    J. Biol. Chem. 284 (15), 10100-10109 (2009) [PubMed] [3EQN, 3EQO]
  116. S. Zhou, S. Fushinobu, Y. Nakanishi, S.-W. Kim, T. Wakagi, and H. Shoun
    Cloning and characterization of two flavohemoglobins from Aspergillus oryzae
    Biochem. Biophys. Res. Comm. 381 (1) 7-11 (2009) [PubMed]
  117. M. Hidaka, M. Nishimoto, M. Kitaoka, T. Wakagi, H. Shoun, and S. Fushinobu*
    The crystal structure of galacto-N-biose/lacto-N-biose I phosphorylase: A large deformation of a tim barrel scaffold
    J. Biol. Chem. 284 (11), 7273-7283 (2009) [PubMed] [2ZUS, 2ZUT, 2ZUU, 2ZUV, 2ZUW]
  118. L.-H. Xu, S. Fushinobu, H. Ikeda, T. Wakagi, and H. Shoun
    Crystal structures of cytochrome P450 105P1 from Streptomyces avermitilis: Conformational flexibility and histidine ligation state
    J. Bacteriol. 191 (4), 1211-1219 (2009) [PubMed] [3E5J, 3E5K, 3E5L]
  119. T. Tomita, T. Miyagawa, T. Miyazaki, S. Fushinobu, T. Kuzuyama, and M. Nishiyama
    Mechanism for multiple-substrates recognition of α-aminoadipate aminotransferase from Thermus thermophilus
    Proteins: Struct. Funct. Bioinform. 75 (2), 348-359 (2009) [PubMed] [2EGY, 2ZP7, 2Z1Y, 3CBF]
  120. J. Luo, E. Fukuda, H. Takase, S. Fushinobu, H. Shoun, and T. Wakagi
    Identification of the lysine residue responsible for coenzyme A binding in the heterodimeric 2-oxoacid:ferredoxin oxidoreductase from Sulfolobus tokodaii, a thermoacidophilic archaeon, using 4-fluoro-7-nitrobenzofurazan as an affinity label
    Biochim. Biophys. Acta - Proteins Proteomics 1794 (2), 335-340 (2009) [PubMed]
  121. R. Suzuki, J. Wada, T. Katayama, S. Fushinobu*, T. Wakagi, H. Shoun, H. Sugimoto, A. Tanaka, H. Kumagai, H. Ashida, M. Kitaoka, and K. Yamamoto
    Structural and thermodynamic analyses of solute-binding protein from Bifidobacterium longum specific for core 1 disaccharide and lacto-N-biose I
    J. Biol. Chem. 238 (19), 13165-13173 (2008) [PubMed] [2Z8D, 2Z8E, 2Z8F]
  122. Y. Honda, S. Fushinobu, M. Hidaka, T. Wakagi, H. Shoun, H. Taniguchi, and M. Kitaoka
    Alternative strategy for converting an inverting glycoside hydrolase into a glycosynthase
    Glycobiology 18 (4), 325-330 (2008) [PubMed]
  123. S. Fushinobu*, B. Mertz, A. D. Hill, M. Hidaka, M. Kitaoka, and P. J. Reilly
    Computational analyses of the conformational itinerary along the reaction pathway of GH94 cellobiose phosphorylase
    Carbohydr. Res. 343 (6), 1023-1033 (2008) [PubMed]
  124. T. Koseki, Y. Mese, S. Fushinobu, K. Masaki, T. Fujii, K. Ito, Y. Shiono, T. Murayama, and H. Iefuji
    Biochemical characterization of a glycoside hydrolase family 61 endoglucanase from Aspergillus kawachii
    Appl. Microbiol. Biotechnol. 77 (6), 1279-1285 (2008) [PubMed]
  125. K. Takaki, S. Fushinobu, S.-W. Kim, M. Miyahara, T. Wakagi, and H. Shoun
    Streptomyces griseus enhances denitrification by Ralstonia pickettii K50, which is possibly mediated by histidine produced during co-culture
    Biosci. Biotechnol. Biochem. 72 (1), 163-170 (2008) [PubMed] B.B.B. Article Award 2008
  126. T. Tsukada, K. Igarashi, S. Fushinobu, M. Samejima
    Role of subsite +1 residues in pH dependence and catalytic activity of the glycoside hydrolase family 1 beta-glucosidase BGL1A from the basidiomycete Phanerochaete chrysosporium
    Biotechnol. Bioeng. 99 (6), 1295-1302 (2008) [PubMed]
  127. J. Wada, R. Suzuki, S. Fushinobu, M. Kitaoka, T. Wakagi, H. Shoun, H. Ashida, H. Kumagai, T. Katayama, and K. Yamamoto
    Purification, crystallization and preliminary X-ray analysis of the galacto-N-biose-/lacto-N-biose I-binding protein (GL-BP) of the ABC transporter from Bifidobacterium longum JCM1217
    Acta Cryst. F63 (9), 751-753 (2007) [PubMed]
  128. M. Nishimoto, S. Fushinobu, A. Miyanaga, M. Kitaoka, and K. Hayashi
    Molecular anatomy of the alkaliphilic xylanase from Bacillus halodurans C-125
    J. Biochem. 141 (5), 709-717 (2007) [PubMed] [2DEP]
  129. Y. Nijikken, T. Tsukada, K. Igarashi, M. Samejima, T. Wakagi, H. Shoun, and S. Fushinobu*
    Crystal structure of intracellular family 1 β-glucosidase BGL1A from the basidiomycete Phanerochaete chrysosporium
    FEBS Lett. 581 (7), 1514-1520 (2007) [PubMed] [2E3Z, 2E40]
  130. A. Yoshida, T. Tomita, T. Kurihara, S. Fushinobu, T. Kuzuyama, and M. Nishiyama
    Structural insight into concerted inhibition of α2β2-type aspartate kinase from Corynebacterium glutamicum
    J. Mol. Biol. 368 (2), 521-536 (2007) [PubMed] [2DTJ]
  131. H. Nishimasu, S. Fushinobu, H. Shoun, and T. Wakagi
    Crystal structures of an ATP-dependent hexokinase with broad substrate specificity from the hyperthermophilic archaeon Sulfolobus tokodaii
    J. Biol. Chem. 282 (13), 9923-9931 (2007) [PubMed] [2E2N, 2E2O, 2E2P, 2E2Q]
  132. S. Kakugawa, S. Fushinobu, T. Wakagi, and H. Shoun
    Characterization of a thermostable carboxylesterase from the hyperthermophilic bacterium Thermotoga maritima
    Appl. Microbiol. Biotechnol. 74 (3), 585-591 (2007) [PubMed]
  133. A. Miyanaga, T. Koseki, Y. Miwa, Y. Mese, S. Nakamura, A. Kuno, J. Hirabayashi, H. Matsuzawa, T. Wakagi, H. Shoun, and S. Fushinobu*
    The family 42 carbohydrate-binding module of family 54 α-L-arabinofuranosidase specifically binds the arabinofuranose side chain of hemicellulose
    Biochem. J. 399 (3), 503-511 (2006) [PubMed] [2D43, 2D44]
  134. T. Koseki, K. Takahashi, T. Handa, Y. Yamane, S. Fushinobu, and K. Hashizume
    N-Linked oligosaccharides of Aspergillus awamori feruloyl esterase are important for thermostability and catalysis
    Biosci. Biotechnol. Biochem. 70 (10), 2476-2480 (2006) [PubMed]
  135. T. Koseki, Y. Miwa, Y. Mese, A. Miyanaga, S. Fushinobu, T. Wakagi, H. Shoun, H. Matsuzawa, and K. Hashizume
    Mutational analysis of N-glycosylation recognition sites on the biochemical properties of Aspergillus kawachii α-L-arabinofuranosidase 54
    Biochim. Biophys. Acta - Gen. Subjects 1760 (9), 1458-1464 (2006) [PubMed]
  136. M. Hidaka, M. Kitaoka, K. Hayashi, T. Wakagi, H. Shoun, and S. Fushinobu*
    Structural dissection of the reaction mechanism of cellobiose phosphorylase
    Biochem. J. 398 (1), 37-43 (2006) [PubMed] [2CQS, 2CQT]
  137. T. Tomita, S. Fushinobu, T. Kuzuyama, and M. Nishiyama
    Structural basis for the alteration of coenzyme specificity in a malate dehydrogenase mutant
    Biochem. Biophys. Res. Commun. 347 (2), 502-508 (2006) [PubMed] [1WZI, 1WZE]
  138. S.-Y. Jun, S. Fushinobu, H. Nojiri, T. Omori, H. Shoun, and T. Wakagi
    Improving the catalytic efficiency of a meta-cleavage product hydrolase (CumD) from Pseudomonas fluorescens IP01
    Biochim. Biophys. Acta - Proteins Proteomics 1764 (7), 1159-1166 (2006) [PubMed] [2D0D]
  139. H. Nishimasu, S. Fushinobu, H. Shoun, and T. Wakagi
    Identification and characterization of an ATP-Dependent hexokinase with broad substrate specificity from the hyperthermophilic archaeon Sulfolobus tokodaii
    J. Bacteriol. 188 (5), 2014-2019 (2006) [PubMed]
  140. M. Nakajima, S. Fushinobu*, H. Imamura, H. Shoun, and T. Wakagi
    Crystallization and preliminary X-ray analysis of cytosolic α-mannosidase from Thermotoga maritima
    Acta Cryst. F62 (2), 104-105 (2006) [PubMed]
  141. J. Miyazaki, K. Asada, S. Fushinobu, T. Kuzuyama, and M. Nishiyama
    Crystal structure of tetrameric homoisocitrate dehydrogenase from an extreme thermophile, Thermus thermophilus: Involvement of hydrophobic dimer-dimer interaction in extremely high thermotolerance
    J. Bacteriol. 187 (19), 6779-88 (2005) [PubMed] [1X0L]
  142. T. Tomita, S. Fushinobu, T. Kuzuyama, and M. Nishiyama
    Crystal structure of NAD-dependent malate dehydrogenase complexed with NADP(H)
    Biochem. Biophys. Res. Comm. 334 (2), 613-618 (2005) [PubMed] [1Y7T, 2CVQ]
    Biochem. Biophys. Res. Comm. 336 (3), 1001 (2005) [Erratum]
  143. T. Koseki, Y. Miwa, S. Fushinobu, and K. Hashizume
    Biochemical characterization of recombinant acetyl xylan esterase from Aspergillus awamori expressed in Pichia pastoris: Mutational analysis of catalytic residues
    Biochim. Biophys. Acta - Proteins Proteomics 1749 (1), 7-13 (2005) [PubMed]
  144. M. Nishimoto, M. Kitaoka, S. Fushinobu, and K. Hayashi
    Role of the conserved arginine residue in the loop 4 of glycoside hydrolase family 10 xylanases
    Biosci. Biotechnol. Biochem. 69 (5), 904-910 (2005) [PubMed]
  145. T. Shinoda, K. Arai, M. Shigematsu-Iida, Y. Ishikura, S. Tanaka, T. Yamada, M. S. Kimber, E. F. Pai, S. Fushinobu, and H. Taguchi
    Distinct conformation-mediated functions of an active site loop in the catalytic reactions of NAD-dependent D-lactate dehydrogenase and formate dehydrogenase
    J. Biol. Chem. 280 (17), 17068-17075 (2005) [PubMed]
  146. S. Fushinobu*, M. Hidaka, Y. Honda, T. Wakagi, H. Shoun, and M. Kitaoka
    Structural basis for the specificity of the reducing end xylose-releasing exo-oligoxylanase from Bacillus halodurans C-125
    J. Biol. Chem. 280 (17), 17180-17186 (2005) [PubMed] [1WU4, 1WU5, 1WU6]
  147. X. Dong, S. Fushinobu, E. Fukuda, T. Terada, S. Nakamura, K. Shimizu, H. Nojiri, T. Omori, H. Shoun, and T. Wakagi
    Crystal structure of the terminal cumene dioxygenase component of Pseudomonas fluorescens IP01
    J. Bacteriol. 187 (7), 2483-2490 (2005) [PubMed] [1WQL]
  148. J.-W. Nam, H. Noguchi, Z. Fujimoto, H. Mizuno, Y. Ashikawa, M. Abo, S. Fushinobu, N. Kobashi, T. Wakagi, K. Iwata, T. Yoshida, H. Habe, H. Yamane, T. Omori, and H. Nojiri
    Crystal structure of the ferredoxin component of carbazole 1,9a-dioxygenase of Pseudomonas resinovorans strain CA10, a novel Rieske non-heme iron oxygenase system
    Proteins: Struct. Funct. Bioinform. 58 (4), 779-789 (2005) [PubMed] [1VCK]
  149. T. Koseki, K. Takahashi, S. Fushinobu, H. Iefuji, K. Iwano, K. Hashizume, and H. Matsuzawa
    Mutational analysis of a feruloyl esterase from Aspergillus awamori involved in substrate discrimination and pH dependence
    Biochim. Biophys. Acta - Gen. Subjects 1722 (2), 200-208 (2005) [PubMed]
  150. S. Fushinobu*, S.-Y. Jun, M. Hidaka, H. Nojiri, H. Yamane, H. Shoun, T. Omori, and T. Wakagi
    A series of crystal structures of a meta-cleavage product hydrolase from Pseudomonas fluorescens IP01 (CumD) complexed with various cleavage products
    Biosci. Biotechnol. Biochem. 69 (3), 491-498 (2005) [PubMed] [1UK6, 1UK7, 1UK8, 1UK9, 1UKA, 1UKB]
  151. Y. Honda, S. Fushinobu, M. Hidaka, T. Wakagi, H. Shoun, and M. Kitaoka
    Crystallization and preliminary X-ray analysis of reducing-end xylose-releasing exo-oligoxylanase from Bacillus halodurans C-125
    Acta Cryst. F61 (3), 291-292 (2005) [Pubmed]
  152. M. Hidaka, M. Kitaoka, K. Hayashi, T. Wakagi, H. Shoun, and S. Fushinobu*
    Crystallization and preliminary X-ray analysis of cellobiose phosphorylase from Cellvibrio gilvus
    Acta Cryst. D60 (10), 1877-1878 (2004) [Pubmed]
  153. A. Miyanaga, T. Koseki, H. Matsuzawa, T. Wakagi, H. Shoun, and S. Fushinobu*
    Crystal structure of a family 54 α-L-arabinofuranosidase reveals a novel carbohydrate-binding module that can bind arabinose
    J. Biol. Chem. 279 (43), 44907-44914 (2004) [PubMed] [1WD3, 1WD4]
  154. R. Oshima, S. Fushinobu, F. Su, L. Zhang, N. Takaya, and H. Shoun
    Structural evidence for direct hydride transfer from NADH to cytochrome P450nor
    J. Mol. Biol. 342 (1), 207-217 (2004) [PubMed] [1XQD, 1ULW, (1J3O has been withdrawn)]
  155. M. Konno, Y. Sano, K. Okudaira, Y. Kawaguchi, Y. Yamagishi-Ohmori, S. Fushinobu, and H. Matsuzawa
    Escherichia coli cyclophilin B binds a highly distorted form of trans-prolyl peptide isomer
    Eur. J. Biochem. 271 (18), 3794-3803 (2004) [PubMed] [1V9T, 1VAI, 1J2A]
  156. J.-J. Jeong, T. Sonoda, S. Fushinobu, H. Shoun, and T. Wakagi
    Crystal structure of isocitrate dehydrogenase from Aeropyrum pernix
    Proteins: Struct. Funct. Bioinform. 55 (4), 1087-1089 (2004) [PubMed] [1V94]
  157. F. Su, S. Fushinobu, N. Takaya, and H. Shoun
    Involvement of a Glu71-Arg64 couple in the access channel for NADH in cytochrome P450nor
    Biosci. Biotechnol. Biochem. 68 (5), 1156-1159 (2004) [PubMed]
  158. M. Nishimoto, S. Fushinobu, A. Miyanaga, T. Wakagi, H. Shoun, K. Sakka, K. Ohmiya, S. Nirasawa, M. Kitaoka, and K. Hayashi
    Crystallization and preliminary X-ray analysis of xylanase B from Clostridium stercorarium
    Acta Cryst. D60 (2), 342-343 (2004) [PubMed]
  159. M. Hidaka, Y. Honda, M. Kitaoka, S. Nirasawa, K. Hayashi, T. Wakagi, H. Shoun, and S. Fushinobu*
    Chitobiose phosphorylase from Vibrio proteolyticus, a member of glycosyl transferase family 36, has a clan GH-L-like (α/α)6 barrel fold
    Structure 12 (6), 937-947 (2004) [PubMed] [1V7V, 1V7W, 1V7X]
  160. H. Nishimasu, S. Fushinobu, H. Shoun, and T. Wakagi
    The first crystal structure of the novel class of fructose-1,6-bisphosphatase present in thermophilic archaea
    Structure 12 (6), 949-959 (2004) [PubMed] [1UMG]
  161. A. Miyanaga, T. Koseki, H. Matsuzawa, T. Wakagi, H. Shoun, and S. Fushinobu*
    Expression, purification, crystallization and preliminary X-ray analysis of α-L-arabinofuranosidase B from Aspergillus kawachii
    Acta Cryst. D60 (7), 1286-1288 (2004) [Pubmed]
  162. A. Miyanaga, S. Fushinobu*, K. Ito, H. Shoun, and T. Wakagi
    Mutational and structural analysis of cobalt-containing nitrile hydratase on substrate and metal binding
    Eur. J. Biochem. 271 (2), 429-438 (2004) [PubMed] [1UGP, 1UGQ, 1UGR, 1UGS]
  163. S. Fushinobu*, H. Shoun, and T. Wakagi
    The crystal structure of Sulerythrin, a rubrerythrin-like protein from a strictly aerobic archaeon, Sulfolobus tokodaii strain 7, shows unexpected domain swapping
    Biochemistry 42 (40), 11707-11715 (2003) [PubMed] [1J30]
  164. S. Ito, S. Fushinobu, J.-J. Jeong, I. Yoshioka, S. Koga, H. Shoun, and T. Wakagi
    Crystal structure of an ADP-dependent glucokinase from Pyrococcus furiosus: Implications for a sugar-induced conformational change in ADP-dependent kinase
    J. Mol. Biol. 331 (4), 871-883 (2003) [PubMed] [1UA4] Cover Illustration of This Issue
  165. J.-J. Jeong, S. Fushinobu*, S. Ito, H. Shoun, and T. Wakagi
    Archaeal ADP-dependent phosphofructokinase: expression, purification, crystallization and preliminary crystallographic analysis
    Acta Cryst. D59 (7), 1327-1329 (2003) [PubMed]
  166. H. Imamura, S. Fushinobu, M. Yamamoto, T. Kumasaka, B.-S. Jeon, T. Wakagi, and H. Matsuzawa
    Crystal structures of 4-α-glucanotransferase from Thermococcus litoralis and its complex with an inhibitor
    J. Biol. Chem. 278 (21), 19378-19386 (2003) [PubMed] [1K1W, 1K1X, 1K1Y]
  167. H. Habe, K. Morii, S. Fushinobu, J.-W. Nam, Y. Ayabe, T. Yoshida, T. Wakagi, H. Yamane, H. Nojiri, and T. Omori
    Crystal structure of a histidine-tagged serine hydroase involved in the carbazole degradation (CarC enzyme)
    Biochem. Biophys. Res. Commun. 303 (2), 631-639 (2003) [PubMed] [1J1I]
  168. J.-J. Jeong, S. Fushinobu, S. Ito, B.-S. Jeon, H. Shoun, and T. Wakagi
    Characterization of the cupin-type phosphoglucose isomerase from the hyperthermophilic archaeon Thermococcus litoralis
    FEBS Lett. 535 (1-3), 200-204 (2003) [PubMed]
  169. T. Shimamura, A. Ibuka, S. Fushinobu, T. Wakagi, M. Ishiguro, Y. Ishii, and H. Matsuzawa
    Acyl-intermediate structures of the extended-spectrum class A beta -lactamase, Toho-1, in complex with cefotaxime, cephalothin and benzylpenicillin
    J. Biol. Chem. 277 (48), 46601-46608 (2002) [PubMed] [1IYO, 1IYP, 1IYQ]
  170. S. Fushinobu*, T. Saku, M. Hidaka, S.-Y. Jun, H. Nojiri, H. Yamane, H. Shoun, T. Omori, and T. Wakagi
    Crystal structures of a meta-cleavage product hydrolase from Pseudomonas fluorescens IP01 (CumD) complexed with cleavage products
    Protein Science 11 (9), 2184-2195 (2002) [PubMed] [1IUN, 1IUO, 1IUP]
  171. M. Hidaka, S. Fushinobu*, N. Ohtsu, H. Motoshima, H. Matsuzawa, H. Shoun, and T. Wakagi
    Trimeric crystal structure of the glycoside hydrolase family 42 beta-galactosidase from Thermus thermophilus A4 and the structure of its complex with galactose
    J. Mol. Biol. 322 (1), 79-91 (2002) [PubMed] [1KWG, 1KWK]
  172. T. Saku, S. Fushinobu*, S. Y. Jun, N. Ikeda, H. Nojiri, H. Yamane, T. Omori, and T. Wakagi
    Purification, characterization, and steady-state kinetics of a meta-cleavage compound hydrolase from Pseudomonas fluorescens IP01
    J. Biosci. Bioeng. 93 (6), 568-574 (2002) [PubMed]
  173. T. Murata, S. Fushinobu, M. Nakajima, O. Asami, T. Sassa, T. Wakagi, and I. Yamaguchi
    Crystal structure of the liganded anti-gibberellin A4 antibody 4-B8(8)/E9 Fab fragment
    Biochem. Biophys. Res. Comm. 293 (1), 489-496 (2002) [PubMed] [1KFA]
  174. H. Uchikoba, S. Fushinobu, T. Wakagi, M. Konno, H. Taguchi, and H. Matsuzawa
    Crystal structure of non-allosteric L-lactate dehydrogenase from Lactobacillus pentosus at 2.3 angstrom resolution: Specific interactions at subunit interfaces
    Proteins 46 (2), 206-214 (2002) [PubMed] [1EZ4]
  175. K. Arai, A. Hishida, M. Ishiyama, T. Kamata, H. Uchikoba, S. Fushinobu, H. Matsuzawa, and H. Taguchi
    An absolute requirement of fructose 1,6-bisphosphate for the Lactobacillus casei L-lactate dehydrogenase activity induced by a single amino acid substitution
    Protein Engineering 15 (1), 35-41 (2002) [PubMed]
  176. A. Miyanaga, S. Fushinobu*, K. Ito, and T. Wakagi
    Crystal structure of cobalt-containing nitrile hydratase
    Biochem. Biophys. Res. Comm. 288 (5), 1169-1174 (2001) [PubMed] [1IRE]
  177. H. Imamura, S. Fushinobu, B. S. Jeon, T. Wakagi, and H. Matsuzawa
    Identification of the catalytic residue of Thermococcus litoralis 4-α-glucanotransferase through mechanism-based labeling
    Biochemistry 40 (41), 12400-12406 (2001) [PubMed]
  178. S. Ito, S. Fushinobu, I. Yoshioka, S. Koga, H. Matsuzawa, and T. Wakagi
    Structural basis for the ADP-specificity of a novel glucokinase from a hyperthermophilic archaeon
    Structure 9 (3), 205-214 (2001) [PubMed] [1GC5]
  179. K. Arai, T. Kamata, H. Uchikoba, S. Fushinobu, H. Matsuzawa, and H. Taguchi
    Some Lactobacillus L-lactate dehydrogenases exhibit comparable catalytic activities for pyruvate and oxaloacetate
    J. Bacteriol. 183 (1), 397-400 (2001) [PubMed] [Free full text]
  180. S. Makino, T. Makino, K. Abe, J. Hashimoto, T. Tatsuta, M. Kitagawa, H. Mori, T. Ogura, T. Fujii, S. Fushinobu, T. Wakagi, and H. Matsuzawa
    Second transmembrane segment of FtsH plays a role in its proteolytic activity and homo-oligomerization
    FEBS Lett. 460 (3), 554-558 (1999) [PubMed]
    FEBS Lett. 467 (2-3), 365 (2000) [Erratum]
  181. A. Ibuka, A. Taguchi, M. Ishiguro, S. Fushinobu, Y. Ishii, S. Kamitori, K. Okuyama, K. Yamaguchi, M. Konno, and H. Matsuzawa
    Crystal structure of the E166A mutant of extended-spectrum beta-lactamase Toho-1 at 1.8A resolution
    J. Mol. Biol. 285 (5), 2079-2087 (1999) [PubMed] [1BZA]
  182. S. Fushinobu, K. Ito, M. Konno, T. Wakagi, and H. Matsuzawa
    Crystallographic and mutational analyses of an extremely acidophilic and acid-stable xylanase: biased distribution of acidic residues and importance of Asp37 for the catalysis at low pH
    Protein Engineering 11 (12), 1121-1128 (1998) [PubMed] [1BK1]
  183. S. Fushinobu, T. Ohta, and H. Matsuzawa
    Homotropic activation via the subunit interaction and allosteric symmetry revealed on analysis of hybrid enzymes of L-lactate dehydrogenase
    J. Biol. Chem. 273 (5), 2971-2976 (1998) [PubMed]
  184. S. Fushinobu, K. Kamata, S. Iwata, H. Sakai, T. Ohta, and H. Matsuzawa
    Allosteric activation of L-lactate dehydrogenase analysed by hybrid enzymes with effector-sensitive and -insensitive subunits
    J. Biol. Chem. 271 (41) 25611-25616 (1996) [PubMed]

Reviews, commentaries, and proceedings (English)

  1. A. Ishiwata*, R. Fukushima, S. Fushinobu, K. Fujita, K. Tanaka, and Y. Ito
    Design and synthesis of the mechanism-based inhibitor probes against the glycoside hydrolase family 116 β-D-arabinofuranosidase
    Peptide Science 2023, pp. 155–156 (2024)
    (Proceedings of The 60th Japanese Peptide Symposium 2023, Shiga, Japan) [Symposium URL]
  2. S. Fushinobu*
    Taking a walk to find new mucinases
    Nat. Catal. 7 345-346 (2024) [DOI]
  3. T. Urashima, K. Fukuda, M. Kitaoka, S. Fushinobu, and T. Katayama
    The key to co-evolution between humans and colonic bifidobacteria; the acquisitions of type 1 oligosaccharides abundance in breast milk as well as type 1 oligosaccharides metabolism by colonic bifidobacteria
    Glycoforum 27 (2), A5 (2024) [DOI] (journal link)
  4. K. Fujita*, A. Ishiwata, and S. Fushinobu
    Role of β-L-Arabinofuranosidases in Intestinal Bacteria
    (腸内細菌におけるβ-L-アラビノフラノシダーゼの役割)
    Trends Glycosci. Glycotechnol. 36 (210), E35-E38 (2024) [DOI]
  5. A. Ishiwata*, T. Kashima, M. Kaieda, K. Tanaka, K. Fujita*, S. Fushinobu*, and Y. Ito*
    Synthesis and structural analysis of D-fructofuranosylated compounds for the analysis of GH172 difructose dianhydride I synthase/hydrolase
    Pure Appl. Chem. 95 (9), 955-964 (2023) [DOI] [PubMed]
    (Proceedings of International Carbohydrate Symposium 2022, Brazil, online)
  6. T. Kashima*, A. Ishiwata, K. Fujita, and S. Fushinobu
    Identification and structural basis of an enzyme that degrades oligosaccharides in caramel
    Biophys. Physicobiol. 20 (2), e200017 (2023) [DOI] [PubMed]
  7. S. Fushinobu* and M. Abou Hachem*
    Structure and evolution of the bifidobacterial carbohydrate metabolism proteins and enzymes
    Biochem. Soc. Trans. 49 (2), 563-578 (2021) [DOI] [PubMed]
  8. S. Fushinobu*
    Molecular evolution and functional divergence of UDP-hexose 4-epimerases
    Curr. Opin. Chem. Biol. 61, 53-62 (2021) [DOI] [PubMed]
    Data files: MEGA (mtsx meg mas) and Excel spreadsheet (xlsx) files used for writing this paper
  9. S. Fushinobu*
    Conformations of the type-1 lacto-N-biose I unit in protein complex structures
    Acta Cryst. F74 (8), 473-479 (2018) [DOI] [PubMed] [Wiley]
    [Kudos] [local PDF reprint] An Excel spreadsheet used for writing this paper is here.
  10. The CAZypedia Consortium (S. Fushinobu is listed as one of the Consortium)
    Ten years of CAZypedia: a living encyclopedia of carbohydrate-active enzymes
    Glycobiology 28 (1), 3-8 (2018) [DOI] [PubMed]
  11. S. Fushinobu*
    Metalloproteins: A new face for biomass breakdown
    Nat. Chem. Biol. 10 (2), 88-89 (2014) [PubMed]
  12. S. Fushinobu*, V. D. Alves, and P. M. Coutinho
    Multiple rewards from a treasure trove of novel glycoside hydrolase and polysaccharide lyase structures: new folds, mechanistic details, and evolutionary relationships
    Curr. Opin. Struct. Biol. 23 (5), 652-659 (2013) [PubMed]
  13. A. Nakamura, T. Ishida, S. Fushinobu, K. Kusaka, I. Tanaka, K. Inaka, Y. Higuchi, M. Masaki, K. Ohta, S. Kaneko, N. Niimura, K. Igarashi and M. Samajima
    Phase-diagram-guided method for growth of a large crystal of glycoside hydrolase family 45 inverting cellulase suitable for neutron structural analysis
    J. Synchrotron Rad. 20 (6), 859-863 (2013) [PubMed]
    (Proceedings of ISDSB2013, 4th International Symposium on Diffraction Structural Biology)
  14. S. Fushinobu
    Unique Sugar Metabolic Pathways of Bifidobacteria
    Biosci. Biotechnol. Biochem. 74 (12), 2374-2384 (2010) [PubMed]: Errata [PubMed]
    Sorry. I made a terrible mistake in Fig. 2.
  15. H. Shoun, S. Fushinobu, L. Jiang, S.-W. Kim, and T. Wakagi
    Fungal denitrification and nitric oxide reductase cytochrome P450nor
    Phil. Trans. R. Soc. B 367 (1593), 1186-1194 (2012) [PubMed]
  16. T. Koseki, S. Fushinobu, Ardiansyah, H. Shirakawa, and M Komai
    Occurrence, properties, and applications of feruloyl esterases
    Appl. Micobiol. Biotechnol. 84 (5), 803-810 (2009) [PubMed]
  17. R. Suzuki, T. Katayama, S. Fushinobu*, M. Kitaoka, H. Kumagai, T. Wakagi, H. Shoun, H. Ashida, and K. Yamamoto
    Crystal structure of GH101 endo-α-N-acetylgalactosaminidase from Bifidobacterium longum
    (Proceedings of the Symposium on Amylases and Related Enzymes, 2008)
    J. Appl. Glycosci. 56 (2), 105-110 (2009) [DOI]
  18. Y. Honda, S. Fushinobu, M. Hidaka, T. Wakagi, H. Shoun, H. Taniguchi, and M. Kitaoka
    Conversion of an inverting glycoside hydrolase into glycosynthase
    (Proceedings of the Symposium on Amylases and Related Enzymes, 2008)
    J. Appl. Glycosci. 56 (2), 119-125 (2009) [DOI]
  19. M. Kitaoka, H. Yuji, S. Fushinobu, M. Hidaka, T. Katayama, and K. Yamamoto
    Conversion of inverting glycoside hydrolases into catalysis for synthesizing glycosidases employing a glycosynthase strategy
    (グライコシンターゼ化による反転型加水分解酵素のグリコシド合成触媒への変換)
    Trends Glycosci. Glycotechnol. 21 (117), 23-39 (2009) [DOI]
  20. M. Kitaoka, Y. Honda, M. Hidaka, and S. Fushinobu
    Strategy for converting an inverting hydrolase into a glycosynthase
    In Carbohydrate-active enzymes: Structure, function and applications (Proceedings of 2008 Agricultural Biotechnology Symposium; Park K.-H., ed), pp. 193-205 (2008), Woodhead Publishing Ltd., Cambridge, England
  21. S. Fushinobu*, M. Hidaka, A. Miyanaga, and H. Imamura
    New structural insights on carbohydrate-active enzymes
    J. Appl. Glycosci. 54 (2), 95-102 (2007) [DOI]
  22. A. Miyanaga, T. Koseki, H. Matsuzawa, T. Wakagi, H. Shoun, and S. Fushinobu*
    Crystal structure of GH54 α-L-arabinofuranosidase and unique function of CBM42 attached to it
    (Proceedings of the Symposium on Amylase and Related Enzymes, 2005)
    J. Appl. Glycosci. 53 (2), 143-148 (2006) [DOI]
  23. M. Kobayashi, S. Fushinobu, T. Wakagi, and H. Shoun
    Interaction of cytochrome P450foxy with fatty acids
    In Flavins and Flavoproteins 2005 (Proceedings of the 15th International Symposium on Flavins and Flavoproteins; T. Nishino, R. Miura, M. Tanokura and K. Fukui, eds), pp. 449-451, ARchiTect inc., Tokyo, Japan
  24. K. Yamamoto, T. Katayama, M. Kitaoka, and S. Fushinobu
    Analyses of Bifidobacterial Glycosidases Involved in the Metabolism of Oligosaccharides
    Biosci. Microflora 29 (1), 23-30 (2010) [DOI]
  25. H. Shoun, N. Takaya, and S. Fushinobu
    Anaerobic respiration in the fungal mitochondrion and cytochrome P450nor
    (Meeting Abstract of the 3rd International Conference on the Biology, Chemistry and Therapeutic Applications of Nitric Oxide. 4th Annual Scientific Meeting of the Nitric Oxide Society of Japan)
    Nitric Oxide - Biology and Chemistry 11 (1): 36-37 (2004)
  26. K. Ito, H. Shimoi, K. Iwashita, and S. Fushinobu
    Cellulase and hemicellulase genes of white koji mold (Aspergillus kawachii)
    In Biotechnology of Lignocellulose Degradation and Biomass Utilization (Proceedings of MIE BIOFORUM 2003; Ohmiya, K., Sakka, K., Karita, S., Kimura, T., Sakka, M. and Onishi, Y., eds), pp. 521-527, Uni Publishers, Tokyo, Japan

Reports (English)

  1. S. Fushinobu, A. Ishiwata, and K. Fujita
    Structures of Rediscovered Mycobacterial Cell Wall Polysaccharide-Degrading Enzymes
    Photon Factory Highlights 2023 [Life Science] 3-3, pp. 28-29 [PDF]
  2. S. Fushinobu, T. Katoh, and T. Kashima
    Structure of bifidobacterial sulfoglycosidase revealed the architecture for specific sugar recognition and breakdown of intestinal mucin glycan
    SPring-8/SACLA Research Frontiers 2023 [Life Science], pp. 30-31 [PDF]
  3. S. Amaki, T. Arakawa, C. Yamada, and S. Fushinobu
    Catalytic Mechanism of Cysteine Glycosidase Revealed by X-Ray Crystallography
    Photon Factory Highlights 2020 [Life Science] 4-6, pp. 50-51 [PDF]
  4. T. Arakawa, Y. Sato, and S. Fushinobu
    Reaction Mechanism for Formation of the Tear-Inducing Chemical Compound from Onion
    Photon Factory Highlights 2019 [Life Science] 4-3, pp. 46-47 [PDF]
  5. Y.-W. Nam, T. Arakawa, and S. Fushinobu
    A key enzyme for biofuel production: "Missing link" between oxidative cellulose degradation and ethanol fermentation by microbes
    Photon Factory Activity Report #33 2015 Part A, Highlights and Facility Report [Life Science], pp. 60-61 [PDF]
  6. T. Wakagi, H. Nishimasu, and S. Fushinobu
    Structural Basis for the Single Active Site to Catalyze Two Distinct Reactions in a Primitive Enzyme FBPA/P
    Photon Factory Activity Report #29 2011 Part A, Highlights and Facility Report [Chemical and Environmental Science], pp. 36-37 [PDF]
  7. S. Fushinobu and R. Suzuki
    Snapshot Structures of Thiamine-Dependent Dehydration Reaction by Phosphoketolase from Bifidobacterium breve
    Photon Factory Activity Report #28 2010 Part A, Highlights and Facility Report [Life Science], pp. 58-59 [PDF]
  8. M. Hidaka, Y. Honda, M. Kitaoka, T. Wakagi, H. Shoun, and S. Fushinobu
    Reclassification of inverting phosphorylases based on structure determination
    Photon Factory Activity Report #22 2004 Part A, Highlights [Biological Science], pp. 43-44 [PDF]
  9. S. Ito, J.-J. Jeong, S. Fushinobu, and T. Wakagi
    Crystal structures of ADP-dependent glucokinases in novel glycolytic pathway of hyperthermophilic archaea
    Photon Factory Activity Report #21 2003 Part A, Highlights [Biological Science], pp. 38-39 [PDF]
  10. S. Ito, S. Fushinobu, and T. Wakagi
    Structural basis for the ADP-specificity of a novel glucokinases from a hyperthermophilic archaeon
    Photon Factory Activity Report #18 2000 Part A, Highlights [Biological Science], pp. 38. [PDF]

Books (English)

  1. Metalloenzymes in Denitrification : Applications and Environmental Impacts (Editors: Isabel Moura, José J G Moura, Sofia R Pauleta, Luisa B Maia)
    2017, RSC Publishing, Cambridge; ISBN: 978-1-78262-334-2
    CHAPTER 14: Denitrification in Fungi
    H. Shoun and S. Fushinobu
    pp. 331-348. [Book DOI] [Google Books]
  2. B Vitamins and Folate: Chemistry, Analysis, Function and Effects (Editor: Victor R Preedy)
    2012, RSC Publishing, Cambridge; ISBN: 978-1-84973-471-4
    CHAPTER 4: The Importance of Vitamins in Biochemistry and Disease as Illustrated by Thiamine Diphosphate (ThDP) Dependent Enzymes
    S. Fushinobu and R. Suzuki
    pp. 55-68. [Book DOI] [Google Books]

Web articles (English)

  1. S. Fushinobu
    Glycoside Hydrolysis Catalyzed by a Cysteine Residue
    Glycoword SA-B06E, Jun. 15 (2023) [URL]

Reviews, proceedings, and other articles (Japanese)

  1. 鹿島騰真、芦田久、伏信進矢
    ビフィズス菌由来のB型血液型抗原に特異的なGH110 α1,3-galactosidase AgaBbの構造解析
    Photon Factory News 42 (3), 10-14 (2024) [PDF]
    T. Kashima, H. Ashida and S. Fushinobu
    Structural insight into a bifidobacterial GH110 α1,3-galactosidase specific for type B blood group antigen
    この号の表紙に採用して頂きました)
  2. 矢野直峰、伏信進矢
    中性子結晶構造解析で明らかになったラムノシルグルクロン酸リアーゼのアラビアガム切断機構
    日本中性子科学会誌「波紋」 34 (4), 130-133 (2024)
  3. 廖増威、伏信進矢
    水素細菌の複合体タンパク質のクライオ電顕による構造解析
    令和5年度東京大学低温センター年報 (Annual Report 2023, Cryogenic Research Center, The University of Tokyo) 15, 14-17 (2023)
  4. 鹿島騰真、伏信進矢、下川倫子、藤田清貴、石渡 明弘
    結核菌の細胞壁糖鎖を分解する新規酵素群の同定と構造基盤
    Identification and structural basis of novel enzymes that degrade cell wall glycans of mycobacteria
    日本結晶学会誌 66 (3), 171-172 (2024) [DOI]
  5. 廖増威、伏信進矢
    クライオ電顕で捕捉したシャペロニン複合体形成の構造基盤
    Structural basis of chaperonin complex formation captured by cryo-electron microscopy
    SPring-8/SACLA利用者情報 29 (3), 195-199 (2024) (journal link)
  6. 加藤紀彦、山田千早、伏信進矢、片山高嶺
    腸内細菌による硫酸化ムチン糖鎖の新規分解経路の発見と解析
    生化学 96 (2), 285-290 (2024) [DOI] (journal link)
    (みにれびゅう)
  7. 伏信進矢
    新規な糖質関連酵素の立体構造解析に関する研究
    応用糖質科学 14 (1), 8-13 (2024) [DOI]
    (総説 -学会賞受賞論文-)
  8. 浦島匡、福田健二、北岡本光、伏信進矢、片山高嶺
    ヒトービフィズス菌共生進化の鍵、ヒト固有のタイプ1型ミルクオリゴ糖優先性への進化とヒト腸内定着性ビフィズス菌によるタイプ1型糖鎖代謝酵素の獲得
    Glycoforum 27 (2), A5 (2024) [DOI] (journal link)
  9. 藤田清貴、石渡明弘、伏信進矢
    腸内細菌におけるβ-L-アラビノフラノシダーゼの役割
    Trends Glycosci. Glycotechnol. 36 (210), J35-J38 (2024) [DOI]
  10. 鹿島騰真、加藤紀彦、山田千早、片山高嶺、芦田久、伏信進矢
    Bifidobacterium bifidum由来の硫酸化ムチン糖鎖および血液型抗原分解酵素の構造基盤
    応用糖質科学 13 (4), 194-202 (2024) [DOI]
    (2022年度応用糖質科学シンポジウム)
  11. 伏信進矢
    酵素の分類と立体構造・反応機構(新・講座:酵素の化学)
    化学と教育 71 (7), 294-297 (2023) [DOI] [J-STAGE] [Society Site]
  12. 伏信進矢
    システイン残基が触媒する糖鎖の加水分解(Web記事)
    Glycoword SA-B06J, 6月15日 (2023) [URL]
  13. 鹿島騰真、石渡明弘、藤田清貴、伏信進矢
    カラメルに含まれるオリゴ糖を分解する酵素の構造生物学的な洞察
    日本結晶学会誌 64 (4), 263-264 (2022) [DOI] [J-STAGE] [Society site]
  14. 鹿島騰真、石渡明弘、藤田清貴、伏信進矢
    カラメルに含まれるオリゴ糖を分解する酵素の同定と構造基盤
    生物物理 62 (3), 184-186 (2022) [DOI] [J-STAGE] [Society site]
  15. 佐藤優太、荒川孝俊、伏信進矢
    タマネギ催涙成分が作られる酵素反応の構造・理論基盤
    Photon Factory News 38 (3), 15-19 (2020) [PDF]
    Y. Sato, T. Arakawa and S. Fushinobu
    Structural and theoretical bases of the enzymatic reaction producing the onion lachrymatory compound
    この号の表紙に採用して頂きました)
  16. 伏信進矢*、山田千早、荒川孝俊、北岡本光
    微生物によるレボグルコサン代謝に関わる酵素
    応用糖質科学 10 (2), 103-108 (2020) [DOI]
    (2019年度応用糖質科学シンポジウム)
    S. Fushinobu*, C. Yamada, T. Arakawa, and M. Kitaoka
    Enzymes involved in levoglucosan metabolism by microbes
    Bull. App. Glycosci. 10 (2), 103-108 (2020)
    (Proceedings of the Symposium on Applied Glycoscience, 2019)
  17. 荒川孝俊、伏信進矢
    タマネギが催涙性分子を生成する複雑なしくみ - 硫黄化合物の反応性と食品化学への新たな知見
    月刊化学 75 (5), 48-51 (2020) [URL]
  18. 後藤愛那、片山高嶺、山田千早、伏信進矢、櫻間晴子
    ラクト-N-ビオシダーゼ(LnbX)の機能から考える母乳オリゴ糖を介したビフィズス菌と母乳栄養児の共生・共進化
    酵素工学ニュース 78, 23-28 (2017) [URL]
  19. 阿部紘一、佐藤真与、荒川孝俊、伏信進矢
    新規な糖質分解酵素の立体構造を決定して分かったこと
    平成28年度東京大学低温センター年報 (Annual Report 2016, Cryogenic Research Center, The University of Tokyo) 8, 26-31 (2017) [URL]
  20. 山田千早、片山高嶺、Mitchell Hattie, Keith A. Stubbs, 荒川孝俊、伏信進矢*
    新規ファミリーに属するビフィズス菌由来ラクト-N-ビオシダーゼの立体構造
    応用糖質科学 7 (2), 63-68 (2017)
    (平成28年度応用糖質科学シンポジウム)
    C. Yamada, T. Katayama, M. Hattie, K. A. Stubbs, T. Arakawa, and S. Fushinobu*
    Crystal structure of a novel GH family lancto-N-biosidase from Bifidobacterium longum subsp. longum
    Bull. App. Glycosci. 7 (2), 63-68 (2017)
    (Proceedings of the Symposium on Applied Glycoscience, 2016)
  21. 伏信進矢
    実用的オリゴ糖合成の可能性を秘めた糖質関連酵素の立体構造
    S. Fushinobu
    Crystal structures of carbohydrate-active enzymes with potential for practical oligosaccharide synthesis
    Int. J. Microgravity Sci. Appl. 34 (1), p340109 (2017) [DOI] [URL]
  22. 伏信進矢
    廃食用油を添加した好気性発酵システムの開発と好熱菌の油脂分解酵素の特性
    生活と環境 (日本環境衛生センター) 61 (5) (#721), 67-72 (2016) [URL]
  23. 伏信進矢
    セルロース系バイオマスからの物質生産の鍵となる酵素とその立体構造
    クリーンエネルギー (日本工業出版) 24 (10), 42-46 (2015) [URL]
  24. 伏信進矢
    新規な糖質関連酵素の構造と機能解析(セミナー室:糖質関連酵素の最近の進歩-3)
    化学と生物 53 (1), 45-50 (2015) [URL]
  25. 伏信進矢
    バイオマス分解酵素に新たなスター ― 銅を活性中心にもつ溶解性多糖モノオキシゲナーゼ(最新のトピックス)
    月刊化学 70 (1), 68-69 (2015) [URL]
  26. 伊藤佑、片山高嶺、Mitchell Hattie、櫻間晴子、和田潤、鈴木龍一郎、芦田久、若木高善、山本憲二、Keith A. Stubbs、伏信進矢*
    ビフィズス菌由来GH20ラクト-N-ビオシダーゼの立体構造と反応機構
    応用糖質科学
    4 (2), 140-146 (2014) [DOI]
    (平成25年度応用糖質科学シンポジウム)
    T. Ito, T. Katayama, M. Hattie, H. Sakurama, J. Wada, R. Suzuki, H. Ashida, T. Wakagi, K. Yamamoto, K. A. Stubbs, and S. Fushinobu*
    Structure and reaction mechanism of GH20 lacto-N-biosidase from Bifidobacterium bifidum
    Bull. App. Glycosci. 4 (2), 140-146 (2014)
    (Proceedings of the Symposium on Applied Glycoscience, 2013)
  27. 伊藤佑、伏信進矢
    ヒトミルクオリゴ糖分解酵素ラクト-N-ビオシダ―ゼのX線結晶構造解析
    Photon Factory News 31 (4), 10-14 (2014) [PDF]
    Crystal structures of GH20 lacto-N-biosidase from Bifidobacterium bifidum
    T. Ito and S. Fushinobu
    (この号の表紙に採用して頂きました)
  28. 小関卓也、伏信進矢
    麹菌由来のフェルラ酸エステラーゼの多様性とその応用
    日本醸造協会誌 108 (4), 204-210 (2013)
    T. Koseki and S. Fushinobu
    Diversity of feruloyl esterases from Koji-Mold and its applications
    J. Brewing Soc. Japan 108 (4), 204-210 (2013) [Japanese]
  29. 伏信進矢、西増弘志、若木高善
    「真の」二機能性酵素の発見とその「変身」のメカニズム
    化学と生物 50 (2), 868-875 (2012) [DOI]
    Discrovery of a "true" biofunctional enzyme and its mechanism of metamorphosis: Archaeal fructose 1,6-bisphosphate aldolase/phosphatase
    S. Fushinobu, H. Nishimasu, and T. Wakagi
    Kagaku to Seibutsu 50 (2), 868-875 (2012)
  30. 小関卓也、堀茜、見原好治、河本かずさ、伏信進矢、小宮大、鈴木健太郎、祥雲弘文、若木高善、村山哲也、塩野義人
    麹菌由来のフェルラ酸エステラーゼについて
    応用糖質科学 2 (2), 111-116 (2012) [DOI]
    (平成23年度糖質関連酵素化学シンポジウム)
    T. Koseki, A. Hori, K. Mihara, K. Kawamoto, S. Fushinobu, D. Komiya, K. Suzuki, H. Shoun, T. Wakagi, T. Murayama, Y. Shiono
    Ferulic acid esterase of Aspergillus origin
    Bull. App. Glycosci. 2 (2), 111-116 (2012)
    (Proceedings of the Symposium on Amylases and Related Enzymes, 2011)
  31. 伏信進矢
    新規な糖質関連酵素の構造・機能解析
    応用糖質科学 2 (1), 44-50 (2012) [DOI]
    (総説 受賞論文)
    S. Fushinobu
    Structural and functional study of novel Carbohydrate-Active enZymes
    Bull. App. Glycosci. 2 (1), 44-50 (2012)
  32. 西増弘志、伏信進矢、若木高善
    1つの酵素が2つの反応を触媒するしくみ
    日本結晶学会誌 54 (2), 113-118 (2012)
    H. Nishimasu, S. Fushinobu, and T. Wakagi
    Molecular mechanism by which one enzyme catalyzes two reactions
    J. Cryst. Soc. Jpn. 54 (2), 113-118 (2012)
  33. 西増弘志、伏信進矢、若木高善
    糖新生経路ではたらく酵素フルクトース-1,6-ビスリン酸アルドラーゼ/ホスファターゼは“変形”して2つの反応を触媒する
    ライフサイエンス新着レビュー 2011年10月10日 [DOI]
  34. 日高將文、伏信進矢
    ビフィズス菌のヒトミルクオリゴ糖分解に関わるホスホリラーゼの結晶構造
    Photon Factory News 27 (2), 18-21 (2009) [PDF]
    M. Hidaka and S. Fushinobu
    (この号の表紙に採用して頂きました)
    Crystal structures of a phosphorylase involved in degradation of human milk oligosaccharide by Bifidobacteria
    Photon Factory News 27 (2), 18-21 (2009) [Japanese]
  35. 祥雲弘文、伏信進矢
    シトクロムP450の生理機能・反応機構・構造
    生化学 80 (6), 560-568 (2008) [PDF]
    H. Shoun and S. Fushinobu
    Physiological function, reaction mechanism, and structure of cytochrone P450nor
    Seikagaku 80 (6), 560-568 (2008)
  36. 伏信進矢、日高將文、北岡本光
    糖質ホスホリラーゼの立体構造からわかる加水分解酵素との進化的関連(一筋縄ではいかないグリコシダーゼの反応機構と分類)
    化学と生物 46(5), 308-309 (2008)
  37. 西増弘志、伏信進矢、祥雲弘文、若木高善
    超好熱性古細菌の新規なヘキソキナーゼの基質結合に伴う構造変化
    Photon Factory News 25 (3), 22-25 (2007) [PDF]
    H. Nishimasu, S. Fushinobu, H. Shoun, and T. Wakagi
    A novel hexokinase from hyperthermophilic archaeon and its structural changes on substrate binding
    Photon Factory News 25 (3), 22-25 (2007) [Japanese]
  38. 日高將文、本多裕司、北岡本光、韮沢悟、林清、若木高善、祥雲弘文、伏信進矢*
    GH-94加リン酸分解酵素の反応機構と基質認識
    (第12回糖質関連酵素化学シンポジウム)
    応用糖質科学 52 (2), 191-196 (2005)
    M. Hidaka, Y. Honda, M. Kitaoka, S. Nirawasa, K. Hayashi, T. Wakagi, H. Shoun, and S. Fushinobu*
    Reaction mechanism and substrate recognition of GH-94 phosphorolytic enzymes
    (Proceedings of the Symposium on Amylases and Related Enzymes, 2004)
    J. Appl. Glycosci. 52 (2), 191-196 (2005) [DOI]
  39. 伏信進矢
    記憶する(?)単量体のアロステリック酵素(Fraction Collector)
    (Structural basis for allosteric regulation of the monomeric allosteric enzyme human glucokinase. Kamata et al.: Structure, 12, 429-438 (2004) の紹介記事)
    蛋白質 核酸 酵素 49 (9), 1318-1319 (2004)
    Protein, Nucleic acid and Enzyme 49 (9), 1318-1319 (2004)
  40. 伏信進矢*、日高將文、今村博臣
    糖質加水分解酵素のバレル構造:ファミリー42と57のX線結晶構造解析
    構造生物 8 (3), 6-15 (2003) [PDF(with abstract in English)]
    S. Fushinobu*, M. Hidaka, and H. Imamura
    Barrel structures of glycosyl hydrolases: crystal structures of family 42 and 57 enzymes
    J. Struct. Biol. Sakabe Project
    8 (3), 6-15 (2003) [Japanese]
  41. 日高將文、伏信進矢*、大津奈穂美、元島英雅、松澤洋、祥雲弘文、若木高善
    Thermus thermophilus A4株由来・新規耐熱性βガラクトシダーゼおよび基質複合体のX線結晶構造解析
    (糖質関連酵素化学シンポジウム)
    応用糖質科学 49 (2), 175-180 (2002)
    M. Hidaka, S. Fushinobu*, N. Ohtsu, H. Motoshima, H. matsuzawa, H. Shoun, and T. Wakagi
    X-ray crystallography of a novel thermostable beta-galactosidase from Thermus thermophilus A4, and its complex structure with galactose
    (Proceedings of the Symposium on Amylases and Related Enzymes, 2001)
    J. Appl. Glycosci. 49 (2), 175-180 (2002) [Japanese]
  42. 今村博臣、伏信進矢、山本雅貴、熊坂崇、若木高善、松澤 洋
    超好熱性古細菌 Thermococcus litoralis 由来4-α-グルカノトランスフェラーゼの反応機構と構造解析
    (糖質関連酵素化学シンポジウム)
    応用糖質科学 48 (2), 171-175 (2001)
    H. Imamura, S. Fushinobu, M. Yamamoto, T. Kumasaka, T. Wakagi, and H. matsuzawa
    Reaction mechanism and crystal structure of 4-α-glucanotransferase from a hyperthermophilic archaeon, Thermococcus litoralis
    (Proceedings of the Symposium on Amylases and Related Enzymes, 2000)
    J. Appl. Glycosci. 48 (2), 171-175 (2001) [Japanese]
  43. 伏信 進矢、松澤 洋
    白麹菌キシラナーゼのX線結晶構造解析と好酸性・耐酸性機構
    日本醸造協会誌 94 (8), 610-614 (1999)
    S. Fushinobu, and H. Matsuzawa
    X-ray crystallography of a xylanase from Aspergillus kawachii and the mechanism of its extremely low pH optimum and acid stability
    J. Brewing Soc. Japan 94 (8), 610-614 (1999) [Japanese]
  44. 伏信 進矢、伊藤 清、今野 美智子、松沢 洋
    Aspergillus kawachii 酸性キシラナーゼCのX線結晶構造解析
    (糖質関連酵素化学シンポジウム)
    応用糖質科学 45 (2), 139-145 (1998)
    S. Fushinobu, K. Ito, M. Konno, and H. Matsuzawa
    X-ray crystallograpy of acid xylanase from Aspergillus kawachii
    (Proceedings of the Symposium on Amylases and Related Enzymes, 1997)
    J. Appl. Glycosci. 45 (2), 139-145 (1998) [Japanese]
  45. 伏信 進矢、松沢 洋
    乳酸菌LDHの活性調節
    バイオサイエンスとインダストリー 56 (10), 685-686 (1998)
    S. Fushinobu, and H. Matsuzawa
    Allosteric regulation of lactate dehydrogenase from lactic acid bacteria
    Bioscience & Industry 56 (10), 685-686 (1998) [Japanese]

Miscellaneous notes (Japanese)

  1. AlphaFold2(用語解説)
    応用糖質科学 13 (2), 136 (2023) [DOI]
  2. 応用糖質科学分野における糖質関連酵素の構造生物学(日本応用糖質科学会70周年記念特別シンポジウムの再録)
    応用糖質科学 13 (1), 25-30 (2023) [DOI はじめに 本文]
  3. 命名と分類は大事(巻頭言)
    化学と生物 60 (7), 313 (2022) [DOI]
  4. 糖の立体配座(用語解説)
    応用糖質科学 8 (2), 168 (2018) [DOI]
  5. YOUは何しに農学部へ?
    進学センターニュース 第73号 2016年4月 [PDF]
  6. アイオワでcomputationalな夏(ピーシーアール アブロード)
    J. Appl. Glycosci. 54 (1), 71-72 (2007)

Books (Japanese)

  1. ストライヤー基礎生化学(第4版) 東京化学同人, 2021
    ISBN 978-4-8079-2010-5
    7・3, 8・1, 8・3, 9章 翻訳(部分)
  2. ストライヤー生化学(第8版) 東京化学同人, 2018
    ISBN 978-4-8079-0929-2
    7, 9, 10章 翻訳(部分)
  3. 日本の結晶学(II) 日本結晶学会, 2014
    ISBN 978-4-9903861-1-5
    伏信進矢 「二機能酵素FBPアルドラーゼ/ホスファターゼ」pp. 354.
  4. 21世紀のバイオサイエンス 実験農芸化学 朝倉書店, 2013
    ISBN 978-4-254-43115-5
    6.1.3a, 6.3.4を執筆
  5. バイオマス分解酵素研究の最前線 - セルラーゼ・ヘミセルラーゼを中心として - シーエムシー出版, 2012
    ISBN 978-4-7813-0521-9
    第10章の4を執筆
    Research Frontier of Biomass Degrading Enzymes – Focused on Cellulases and Hemicellulases –
  6. 生物学辞典 東京化学同人, 2010
    ISBN 9784807907359
    30項目ほど執筆しました。

Awards

  1. 令和5年度 日本応用糖質科学会 学会賞
    新規な糖質関連酵素の立体構造に関する研究
    伏信 進矢
    The Japanese Society of Applied Glycoscience Award 2023
    Studies on the structures of novel carbohydrate-active enzymes
    Shinya Fushinobu
  2. 第13回(平成28年度)日本学術振興会賞
    糖質と糖リン酸に関わる代謝酵素の構造基盤と分子進化の解明
    伏信 進矢
    13th (FY2016) JSPS PRIZE
    Structural Bases and Molecular Evolution of Metabolic Enzymes Acting on Sugars and Sugar Phosphates
    Shinya Fushinobu
  3. 第16回 酵素応用シンポジウム研究奨励賞
    微生物の糖代謝酵素の構造生物学的研究
    伏信 進矢
    16th Research Promoted Award on Enzyme Application, The Amano Enzyme Symposium 2015
    Shinya Fushinobu
  4. 平成23年度 日本応用糖質科学会 奨励賞
    新規な糖質関連酵素の構造・機能解析
    伏信 進矢
    Distinguished Young Scientist Award of the 2011's, the Japanese Society of Applied Glycoscience
    Structural and Functional Study of Novel Carbohydrate-Active enZymes
    Shinya Fushinobu
  5. 第9回 日本農学進歩賞
    糖質関連酵素と産業上有用酵素の構造と機能に関する研究
    伏信 進矢
    Japan Prize in Agricultural Sciences, Achievement Award for Young Scientists 2010 (9th)
    Shinya Fushinobu
  6. 2008年度 農芸化学奨励賞
    糖質分解酵素と特殊環境で働く酵素の構造生物学的研究
    伏信 進矢
    The Japan Bioscience, Biotechnology and Agrochemistry Society Award for the Encouragement of Young Scientists 2008
    Shinya Fushinobu
Back
戻る